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I
n this article we will compare the classical
methods of Fourier analysis with the newer
methods of wavelet analysis. Given a sig-
nal, say a sound or an image, Fourier analy-
sis easily calculates the frequencies and

the amplitudes of those frequencies which make
up the signal. This provides a broad overview of
the characteristics of the signal, which is im-
portant for theoretical considerations. However,
although Fourier inversion is possible under
certain circumstances, Fourier methods are not
always a good tool to recapture the signal, par-
ticularly if it is highly nonsmooth: too much
Fourier information is needed to reconstruct
the signal locally. In these cases, wavelet analy-
sis is often very effective because it provides a
simple approach for dealing with local aspects
of a signal. Wavelet analysis also provides us with
new methods for removing noise from signals
that complement the classical methods of
Fourier analysis. These two methodologies are
major elements in a powerful set of tools for the-
oretical and applied analysis.

This article contains many graphs of discrete
signals. These graphs were created by the com-
puter program FAWAV, A Fourier–Wavelet An-
alyzer, being developed by the author.

Frequency Information, Denoising
As an example of the importance of frequency in-
formation, we will examine how Fourier analysis can
be used for removing noise from signals. Consider
a signal f (x) defined over the unit interval (where here
x stands for time). The period 1 Fourier series ex-
pansion of f is defined by 

∑
n∈Z cnei2πnx, with

cn =
∫ 1
0 f (x)e−i2πnx dx. Each Fourier coefficient, cn , is

an amplitude associated with the frequency n of the
exponential ei2πnx. Although each of these expo-
nentials has a precise frequency, they all suffer from
a complete absence of time localization in that their
magnitudes, |ei2πnx| , equal 1 for all time x.

To see the importance of frequency information,
let us examine a problem in noise removal. In 
Figure 1(a)[top] we show the graph of the signal

(1) f (x) =

(5 cos 2πνx) [ e−640π (x−1/8)2

+ e−640π (x−3/8)2 + e−640π (x−4/8)2

+ e−640π (x−6/8)2 + e−640π (x−7/8)2 ]

where the frequency, ν, of the cosine factor is 280.
Such a signal might be used by a modem for trans-
mitting the bit sequence 1 0 1 1 0 1 1. The Fourier co-
efficients for this signal are shown in Figure 1(b)[top].
The highest magnitude coefficients are concentrated
around the frequencies ±280. Suppose that when this
signal is received, it is severely distorted by added
noise; see Figure 1(a)[middle]. Using Fourier analy-
sis, we can remove most of this noise. Computing the
noisy signal’s Fourier coefficients, we obtain the
graph shown in Figure 1(b)[middle]. The original sig-
nal’s largest magnitude Fourier coefficients are clus-
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tered around the frequency positions ±280. The
Fourier coefficients of the added noise are lo-
calized around the origin, and they decrease in
magnitude until they are essentially zero near
the frequencies ±280. Thus, the original sig-
nal’s coefficients and the noise’s coefficients
are well separated. To remove the noise from the
signal, we multiply the noisy signal’s coefficients
by a filter function, which is 1 where the signal’s
coefficients are concentrated and 0 where the
noise’s coefficients are concentrated. We then re-
cover essentially all of the signal’s coefficients;
see Figure 1(b)[bottom]. Performing a Fourier
series partial sum with these recovered coeffi-
cients, we obtain the denoised signal, which is
shown in Figure 1(a)[bottom]. Clearly, the bit se-
quence 1 0 1 1 0 1 1 can now be determined from
the denoised signal, and the denoised signal is
a close match of the original signal. In the sec-
tion “Signal Denoising” we shall look at another
example of this method and also discuss how
wavelets can be used for noise removal.

Signal Compression
As the example above shows, Fourier analysis is
very effective in problems dealing with frequency
location. However, it is often very ineffective at
representing functions. In particular, there are
severe problems with trying to analyze tran-
sient signals using classical Fourier methods.
For example, in Figure 2(a)[top] we show a dis-
crete signal obtained from M = 1024 values
{fj = F (j/M)}M−1

j=0 of the function F (x) =

e−105π (x−.6)2. For this example, we compute the
discrete Fourier series coefficients f̂n defined by 

f̂n =M−1∑M−1
j=0 fje−i2πnj/M

for n = −1
2M + 1, . . . ,0, . . . , 1

2M . The discrete
Fourier coefficients f̂n can be calculated by a fast
Fourier transform (FFT) algorithm and are the
discrete analog of the Fourier coefficients cn
for F , when fj = F (j/M) . Moreover, f̂n is just a
Riemann sum approximation of the integral that
defines cn .1 The magnitudes of the discrete
Fourier coefficients for this transient damp down
to zero very slowly (their graph is a very wide
bell-shaped curve with maximum at the origin).
Consequently, to represent the transient well, one
must retain most if not all of these Fourier co-
efficients. In Figure 2(a)[bottom] we show the re-
sults obtained from trying to compress the tran-
sient by computing a discrete partial sum∑104
n=−104 f̂nei2πnj using only one-fifth of the

Fourier coefficients.2 Clearly, even a moderate
compression ratio of 5:1 is not effective.

Wavelets, however, are often very effective at
representing transients. This is because they are
designed to capture information over a large
range of scales. A wavelet series expansion of a
function f is defined by∑

n,k∈Z

βnk 2n/2ψ(2nx− k)

with
βnk =

∫∞
−∞
f (x) 2n/2ψ(2nx− k) dx .

The function ψ(x) is called the wavelet, and the
coefficients βnk are called the wavelet coeffi-
cients. The function 2n/2ψ(2nx− k) is the

Figure 1. (a)[top] Signal. (b)[top] Fourier coefficients of signal. (a)[middle] Signal after adding noise.
(b)[middle] Fourier coefficients of noisy signal and filter function. (b)[bottom] Fourier coefficients

after multiplication by filter function. (a)[bottom] Recovered signal.

1For further discussion of discrete Fourier coefficients,
see [2] or [11].
2The sum 

∑512
n=−511 f̂nei2πnj, which uses all of the dis-

crete Fourier coefficients, equals fj.
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wavelet shrunk by a factor of 2n if n is positive
(magnified by a factor of 2−n if n is negative) and
shifted by k2−n units. The factor 2n/2 in the ex-
pression 2n/2ψ(2nx− k) preserves the L2-norm.

Since the wavelet series depends on two pa-
rameters of scale and translation, it can often be
very effective in analyzing signals. These para-
meters make it possible to analyze a signal’s
behavior at a dense set of time locations and with
respect to a vast range of scales, thus providing
the ability to zoom in on the transient behavior
of the signal. For example, let us examine the ear-
lier transient using a discretized version of a
wavelet series. We shall use a Daubechies order
4 wavelet (Daub4 for short; see the section
“Daubechies Wavelets”). In Figure 2(b)[top] we
show all of the 1024 wavelet coefficients of this
transient and observe that most of these coef-
ficients are close to 0 in magnitude. Conse-
quently, by retaining only the largest magnitude
coefficients for use in a wavelet series, we ob-
tain significant compression. In Figure 2(b)[bot-
tom] we show the reconstruction of the transient
using only the top 4% in magnitude of the wavelet
coefficients, a 25:1 compression ratio. Notice
how accurately the transient is represented. In
fact, the maximum error at all computed points
is less than 9.95× 10−14. There is an important
application here to the field of signal transmis-
sion. By transmitting only these 4% of the wavelet
coefficients, the information in the signal can be
transmitted 25 times faster than if we transmit-
ted all of the original signal. This provides a con-
siderable boost in efficiency of transmission.

We shall look at more examples of com-
pression in the section “Compression of Sig-
nals”, but first we shall describe how wavelet
analysis works.

The Haar Wavelet
In order to understand how wavelet analysis
works, it is best to begin with the simplest
wavelet, the Haar wavelet. Let 1A(x) denote the
indicator function of the set A , defined by
1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A. The
Haar wavelet ψ is defined by
ψ(x) = 1[0, 12 )(x)− 1[ 1

2 ,1)(x) . It is 0 outside of

[0,1), so it is well localized in time, and it sat-
isfies∫∞

−∞
ψ(x)dx = 0,

∫∞
−∞
|ψ(x)|2 dx = 1.

The Haar wavelet ψ(x) is closely related to the
function φ(x) defined by φ(x) = 1[0,1)(x). This
function φ(x) is called the Haar scaling function.
Clearly, the Haar wavelet and scaling function
satisfy the identities

(2)
ψ(x) = φ(2x)−φ(2x− 1),
φ(x) = φ(2x) +φ(2x− 1),

and the scaling function satisfies∫∞
−∞
φ(x)dx = 1,

∫∞
−∞
|φ(x)|2 dx = 1.

The Haar wavelet ψ(x) generates the system
of functions {2n/2ψ(2nx− k)}. It is possible to
show directly that {2n/2ψ(2nx− k)} is an or-
thonormal basis for L2(R), but it is more illu-
minating to put the discussion on an axiomatic
level. This axiomatic approach leads to the
Daubechies wavelets and many other wavelets
as well. We begin by defining the subspaces
{Vn}n∈Z of L2(R) in the following way:

Figure 2. (a)[top] Signal. (a)[bottom] Fourier series using 205 coefficients, 5:1 compression. (b)[top]
Wavelet coefficients for signal. (b)[bottom] Wavelet series using only largest 4% in magnitude of
wavelet coefficients, 25:1 compression.
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Vn =
{
step functions in L2(R), constant

on the intervals [
k
2n
,
k + 1
2n

), k ∈ Z
}
.

This set of subspaces {Vn}n∈Z satisfies the fol-
lowing five axioms [6]:

Axioms for a Multi-Resolution Analysis

(MRA)

Scaling: f (x) ∈ Vn if and only if f (2x) ∈ Vn+1.

Inclusion: Vn ⊂ Vn+1, for each n.

Density: closure 
{ ⋃
n∈Z

Vn
}

= L2(R).

Maximality:
⋂
n∈Z

Vn = {0}.
Basis: ∃φ(x) such that {φ(x− k)}k∈Z is an

orthonormal basis for V0.
To satisfy the basis axiom, we shall use the

Haar scaling function φ defined above. Then, by
combining the scaling axiom with the basis
axiom, we find that {2n/2φ(2nx− k)}k∈Z is an
orthonormal basis for Vn. But the totality of all
these orthonormal bases, consisting of the set
{2n/2φ(2nx− k)}k,n∈Z, is not an orthonormal
basis for L2(R) because the spaces Vn are not
mutually orthogonal. To remedy this difficulty,
we need what are called wavelet subspaces. De-
fine the wavelet subspace Wn to be the orthog-
onal complement of Vn in Vn+1. That is, Wn sat-
isfies the equation Vn+1 = Vn ⊕Wn where ⊕
denotes the sum of mutually orthogonal sub-
spaces. From the density axiom and repeated ap-
plication of the last equation, we obtain
L2(R) = V0 ⊕

⊕∞
n=0 Wn. Decomposing V0 in a

similar way, we obtain L2(R) =
⊕
n∈Z Wn. Thus,

L2(R) is an orthogonal sum of the wavelet sub-
spaces Wn.

Using (2) and the MRA axioms, it is easy to
prove the following lemma.

Lemma 1. The functions {ψ(x− k)}k∈Z are an
orthonormal basis for the subspace W0.

It follows from the scaling axiom that
{2n/2ψ(2nx− k)}k∈Z is an orthonormal basis
for Wn. Therefore, since L2(R) is the orthogonal
sum of all the wavelet subspaces Wn, we have
obtained the following result.

Theorem 1. The functions

{2n/2ψ(2nx− k)}k,n∈Z

are an orthonormal basis for L2(R).
This orthonormal basis is the Haar basis for

L2(R). There is also a Haar basis for L2[0,1). To
obtain it, we first define periodic wavelets ψ̃n,k
by

(3) ψ̃n,k(x) =
∑
j∈Z

2n/2ψ
(
2n(x + j)− k) .

Note that these wavelets have period 1. Fur-
thermore, ψ̃n,k ≡ 0 for n < 0, and
ψ̃n,k+2n = ψ̃n,k for all k ∈ Z and n ≥ 0. On the in-
terval [0,1), the periodic Haar wavelets ψ̃n,k sat-
isfy ψ̃n,k(x) = 2n/2ψ(2nx− k) for n ≥ 0 and
k = 0,1, . . . ,2n − 1. So we have the following the-
orem as a consequence of Theorem 1.

Theorem 2. The functions 1 and ψ̃n,k for n ≥ 0
and k = 0,1, . . . ,2n − 1 are an orthonormal basis
for L2[0,1).

Remark. In the section “Daubechies Wavelets”
we will make use of periodized scaling func-
tions, φ̃n,k, defined by

(4) φ̃n,k(x) =
∑
j∈Z

2n/2φ
(
2n(x + j)− k)

for n ≥ 0 and k = 0,1, . . . ,2n − 1.

Fast Haar Transform

The relation between the Haar scaling function
φ and wavelet ψ leads to a beautiful set of re-
lations between their coefficients as bases. Let
{αnk} and {βnk} be defined by

(5)
αnk =

∫∞
−∞
f (x) 2n/2φ(2nx− k)dx,

βnk =
∫∞
−∞
f (x) 2n/2ψ(2nx− k)dx.

Substituting 2nx in place of x in the identities
in (2), we obtain

2n/2φ(2nx) =
1√
2

[2
n+1

2 φ(2n+1x)]

+
1√
2

[2
n+1

2 φ(2n+1x− 1)]

2n/2ψ(2nx) =
1√
2

[2
n+1

2 φ(2n+1x)]

− 1√
2

[2
n+1

2 φ(2n+1x− 1)].

It then follows that

(6)
αnk =

1√
2
αn+1

2k +
1√
2
αn+1

2k+1,

βnk =
1√
2
αn+1

2k − 1√
2
αn+1

2k+1.

This result shows that the nth level coefficients
αnk and βnk are obtained from the (n + 1)st level
coefficients αn+1

k through multiplication by the
following orthogonal matrix:
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(7) O =


1√
2

1√
2

1√
2

−1√
2

 .

Successively applying this orthogonal matrix O,
we obtain {αnk} and {βnk} starting from some
highest level coefficients {αNk } for some large
N. Because of the density axiom, N can be cho-
sen large enough to approximate f by∑
k∈ZαNk 2N/2φ(2Nx− k) in L2-norm as closely

as desired.
Let us now discretize these results. Suppose

that we are working with data {fj}M−1
j=0 associ-

ated with the time values {xj = j/M}M−1
j=0 on the

unit interval. If we shrink the Haar scaling func- 
tion φ(x) = 1[0,1)(x) enough, it covers only the
first point, x0 = 0. Consequently, by choosing a
large enough N, we may assume that our scal-
ing coefficients {αNk } satisfy αNk = fk, for
k = 0,1, . . . ,M − 1. Assuming that M is a power
of 2, say M = 2R , it follows that N = R .

The next step involves expressing the coeffi-
cient relations in (6) in a matrix form. Let A⊕ B
stand for the orthogonal sum of the matrices A
and B, that is, A⊕ B =

(
A 0
0 B

)
. Now let HM denote

the M ×M orthogonal matrix defined by
HM = O⊕O⊕ · · · ⊕O, where the orthogonal
matrix sums are applied M/2 times and O is the
matrix defined in (7). Then, by applying the co-
efficient relations in (6) and using the fact that
fk = αRk , we obtain

HM [f0, f1, . . . , fM−1]T

=
[
αR−1

0 , βR−1
0 , αR−1

1 , βR−1
1 ,

. . . , αR−1
1
2M−1

, βR−1
1
2M−1

]T
.

To sort the coefficients properly into two groups,
we apply an M ×M permutation matrix PM as
follows: 

PM
[
αR−1

0 , βR−1
0 , . . . , αR−1

1
2M−1

, βR−1
1
2M−1

]T

=
[
αR−1

0 , . . . , αR−1
1
2M−1

, βR−1
0 , . . . , βR−1

1
2M−1

]T
.

If we go to the next lower level, the transfor-
mations just described are repeated, only now
the matrices used are HM/2 and PM/2, and they
operate only on the M/2 -length vector

{αR−1
0 , . . . , αR−1

1
2M−1

} to obtain the next level

wavelet coefficients {βR−2
0 , . . . , βR−2

1
4M−1

} and

scaling coefficients {αR−2
0 , . . . , αR−2

1
4M−1

} . These

operations continue until we can no longer 
divide the number of components by 2. At the
R = log2M step, we obtain a single scale coeffi-

cient α0
0 and a single wavelet coefficient β0

0,
and at this last step the permutation P2 is un-
necessary. The complete transformation, de-
noted by H , satisfies

H = (H2 ⊕ IM−2)

· · · (PM/2 ⊕ IM/2) (HM/2 ⊕ IM/2)PM HM

where IN is the N ×N identity matrix.
These matrix multiplications can be per-

formed rapidly on a computer. Multiplying by
HM requires only O(M) operations, since HM
consists mostly of zeroes. Similarly, the per-
mutation PM requires O(M) operations. There-
fore, the whole transformation requires
O(M) + O(M/2) + · · · + O(2) = O(M) operations.
The transformation H is called a fast Haar
transform. It should be noted that FFTs, which
have revolutionized scientific practice during
the last thirty years, are O(M logM) algorithms.

Since each Hk is an orthogonal matrix, and
so is every permutation Pk, it follows that H is
invertible. Its inverse is

H−1 = HT
M P

T
M (HT

M/2 ⊕ IM/2) (PT
M/2 ⊕ IM/2)

· · · (HT
2 ⊕ IM−2).

Therefore, the inverse operation is also an O(M)
operation.

Discrete Haar Series
The fast Haar transform can be used for com-
puting partial sums of the discretized version
of the following Haar wavelet series in L2[0,1):

(8) α0
0 +

∞∑
n=0

2n−1∑
k=0

βnk 2n/2ψ(2nx− k).

Let us assume, as in the previous section, that
we have a discrete signal {fj}M−1

j=0 associated

with the time values {xj = j/M}M−1
j=0 on the unit

interval. Substituting these time values into (8)
and restricting the upper limit of n, we obtain

fj = α0
0 CM +

R−1∑
n=0

2n−1∑
k=0

βnk CM 2n/2ψ(2nxj − k).

The right side of this equation is just the trans-
formation H−1H applied to {fj} . The first
part of this transformation, H{fj}, produces the 

coefficients α0
0, β

0
0, β

1
0, β

1
1, . . . , β

R−1
1
2M−1, and the

second part, the application of H−1, repro-
duces the original data {fj}. The constant CM
is a scale factor which ensures that the constant
vector CM and the vectors {CM2n/2ψ(2nxj − k)}
are unit vectors in RM , using the standard inner
product. Consequently, CM =

√
1/M .

There are many ways of forming partial sums
of discretized Haar series. The simplest ones con-
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sist of multiplying the data by H , then setting
some of the resulting coefficients equal to 0, and
then multiplying by H−1. A widely used method
involves specifying a threshold. All coefficients
whose magnitudes lie below this threshold are
set equal to 0. This method is frequently used
for noise removal, where coefficients whose
magnitudes are significant only because of the
added noise will often lie below a well-chosen
threshold. We shall give an example of this in the
section “Signal Denoising”. A second method
keeps only the largest magnitude coefficients,
while setting the rest equal to 0. This method
is convenient for making comparisons when it
is known in advance how many terms are needed.
We used it in the compression example in the sec-
tion “Signal Compression”. A third method,
which we shall call the energy method, involves
specifying a fraction of the signal’s energy, where
the energy is the square root of the sum of the
squares of the coefficients.3 We then retain the
least number of the largest magnitude coeffi-
cients whose energy exceeds this fraction of the
signal’s energy and set all other coefficients
equal to 0. The energy method is useful for the-
oretical purposes: it is clearly helpful to be able
to specify in advance what fraction of the sig-
nal’s energy is contained in a partial sum. We
shall use the energy method frequently below.

Let us look at an example. Suppose our sig-
nal is 

{fj = F (j/8192)}8191
j=0

where F (x) = x1[0,.5)(x) + (x− 1)1[.5,1)(x). In Fig-
ure 3(a)[top] we show a Haar series partial sum,

created by the energy method, which contains
99.5% of the energy of this signal. This partial
sum, which used 229 coefficients out of a pos-
sible 8192, provides an acceptable visual repre-
sentation of the signal. In fact, the sum of the
squares of the errors is 2.0× 10−3. By compar-
ison a 229 coefficient Fourier series partial sum
suffers from serious drawbacks (see Figure
3(b)[top]). The sum of the squares of the errors
is 4.5× 10−1, and there is severe oscillation and
a Gibbs’ effect near x = 0.5. Although these lat-
ter two defects could be ameliorated using other
summation methods ([11], Ch. 4), there would
still be a significant deviation from the original
signal (especially near x = 0.5).

This example illustrates how wavelet analy-
sis homes right in on regions of high variability
of signals and that Fourier methods try to
smooth them out. The size of a function’s Fourier
coefficients is related to the frequency content
of the function, which is measured by integra-
tion of the function against completely unlo-
calized basis functions. For a function having a
discontinuity, or some type of transient behav-
ior, this produces Fourier coefficients that de-
crease in magnitude at a very slow rate. Conse-
quently, a large number of Fourier coefficients
are needed to accurately represent such sig-
nals.4 Wavelet series, however, use compactly
supported basis functions which, at increasing
levels of resolution, have rapidly decreasing sup-
ports and can zoom in on transient behavior. The
transient behaviors contribute to the magnitude
of only a small portion of the wavelet coefficients.

Figure 3. (a)[top] Haar series partial sum, 229 terms. (b)[top] Fourier series partial sum, 229 terms.
(a)[bottom] Haar series partial sum, 92 terms. (b)[bottom] Daub4 series partial sum, 22 terms.

3The Haar transform is orthogonal, so it makes sense
to specify energy in this way.

4In recent years, though, significant improvements
have been achieved using local cosine bases [3, 7,
9, 5, 1].
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Consequently, a small number of wavelet coeffi-
cients are needed to accurately represent such sig-
nals.

The Haar system performs well when the signal
is constant over long stretches. This is because the
Haar wavelet is supported on [0,1) and satisfies a
0th order moment condition, 

∫∞
−∞ψ(x)dx = 0. There-

fore, if the signal {fj} is constant over an interval
a ≤ xj < b such that [k2−n, (k + 1)2−n) ⊂ [a, b), then

the wavelet coefficient βnk equals 0. For example, sup-

pose {fj = F (j/8192)}8191
j=0 where

F (x) = (8x− 1)1[.125,.25)(x)

+ 1[.25,.75)(x) + (7− 8x)1[.75,.875)(x).

In Figure 3(a)[bottom] we show a Haar series partial
sum which contains 99.5% of the energy of this sig-
nal and uses only 92 coefficients out of a possible
8192. The fact that the signal is constant over three
large subintervals of [0,1) accounts for the excellent
compression in this example. In order to obtain
wavelet bases that provide considerably more com-
pression, we need a compactly supported wavelet
ψ(x) which has more moments equal to zero. That
is, we want

(9)
∫∞
−∞
xj ψ(x)dx = 0, for j = 0,1, . . . , L− 1

for an integer L ≥ 2. We say that such a wavelet has
its first L moments equal to zero. For example, a
Daub4 wavelet has its first 2 moments equal to zero.
Using a Daub4 wavelet series for the signal above, it
is possible to capture 99.5% of the energy using only
22 coefficients! See Figure 3(b)[bottom]. This im-
provement in compression is due to the fact that the

Daub4 wavelet is supported on [0,3) and satis-
fies 

∫∞
−∞ψ(x)dx = 0 and 

∫∞
−∞ xψ(x)dx = 0. Con-

sequently, if the signal is constant or linear over
an interval [a, b) which contains
[k2−n,3(k + 1)2−n) , then the wavelet coefficient
βnk will equal 0. In Figure 4(a) we show graphs
of the magnitudes of the highest level Haar co-
efficients and Daub4 coefficients. Each magni-
tude |β12

k | is plotted at the x-coordinate k2−12

for k = 0,1, . . . ,212 − 1. These graphs show that
the highest level Haar coefficients are near 0 over
the constant parts of F , while the highest level
Daub4 coefficients are near 0 over the constant
and linear parts of F . In Figure 4(b) we show
graphs of the sums of the squares of all the co-
efficients, which show that almost all the Daub4
coefficients are near 0 over the constant and lin-
ear parts of F , while the Haar coefficients are
near 0 only over the constant parts of F . Fur-
thermore, the largest magnitude Daub4 coeffi-
cients are concentrated around the locations of
the points of nondifferentiability of F. This kind
of local analysis illustrates one of the powerful
features of wavelet analysis.

Looking again at Figure 3(b)[bottom], we see
that the most serious defects of the Daub4 com-
pressed signal are near the points where F is non-
differentiable. If, however, we consider the in-
terval [0.4,0.6] where F is constant, the Daub4
compressed signal values differ from the values
of F by no more than 1.2× 10−15 at all of the
1641 discrete values of x in this interval. In
contrast, a Fourier series partial sum using 23
coefficients differs by more than 10−3 at 1441
of these 1641 values of x. The Fourier series par-
tial sum exhibits oscillations of amplitude
6.5× 10−3 around the value 1 over this subin-

Figure 4. (a) Magnitudes of highest level coefficients for a function F: [top] Haar coefficients, [middle]
Daub4 coefficients; [bottom] Graph of F. (b) Sums of squares of all coefficients: [top] Haar coefficients,
[middle] Daub4 coefficients; [bottom] Graph of F. Vertical scales for highest level coefficients and sums
of squares are logarithmic.
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terval. Because the Fourier coefficients for F are
only O (n−2), using just the first 23 coefficients
produces an oscillatory approximation to F over
all of [0,1), including the subinterval [0.4,0.6].
The highest magnitude wavelet coefficients,
however, are concentrated at the corner points
for F , and their terms affect only a small por-
tion of the partial sum (since their basis func-
tions are compactly supported). Consequently,
the wavelet series provides an extremely close
approximation of F over the subinterval
[0.4,0.6].

A major defect of the Haar wavelet is its dis-
continuity. For one thing, it is unsatisfying to use
discontinuous functions to approximate con-
tinuous ones. Even with discrete signals there can
be undesirable jumps in Haar series partial sum
values (see Figure 3(a)[bottom]). Therefore, we
want to have a wavelet that is continuous. In the
next section we will describe the Daubechies
wavelets, which have their first L ≥ 2 moments
equal to zero and are continuous.

Daubechies Wavelets
It is possible to generalize the construction of
the Haar wavelet so as to obtain a continuous
scaling function φ(x) and a continuous wavelet
ψ(x). Moreover, Daubechies has shown how to
make them compactly supported. We will briefly
sketch the main ideas; more details can be found
in [4, 5, 8, 10].

Generalizing from the case of the Haar
wavelets, we require that φ(x) and ψ(x) satisfy

(10)

∫∞
−∞
φ(x)dx = 1,

∫∞
−∞
|φ(x)|2 dx = 1,∫∞

−∞
|ψ(x)|2 dx = 1.

The MRA axioms tell us that φ(x) must gener-
ate a subspace V0 and that V0 ⊂ V1. Therefore,

(11) φ(x) =
∑
k∈Z

ck
√

2φ(2x− k)

for some constants {ck}. A wavelet ψ(x), for
which {ψ(x− k)} spans the wavelet subspace
W0, can be defined by5

(12) ψ(x) =
∑
k∈Z

(−1)kc1−k
√

2φ(2x− k).

Equations (11) and (12) generalize the equations
in (2) for the Haar case. The orthogonality of φ
and ψ leads to the following equation

(13)
∑
k∈Z

(−1)kc1−kck = 0.

This equation, and the second equation in (14)
below, imply the orthogonality of the matrices,
WN, used in the fast wavelet transform which we
shall discuss later in this section.

Combining (11) with the first two integrals in
(10), it follows that

(14)
∑
k∈Z

ck =
√

2,
∑
k∈Z

|ck|2 = 1.

Similarly, assuming that L = 2, the equations in
(9) combined with (12) imply

(15)
∑
k∈Z

(−1)kck = 0,
∑
k∈Z

k(−1)kck = 0.

5A simple proof, based on the MRA axioms, that
{ψ(x− k)} spans W0 can be found in [10].

Figure 5. (a)[top] Signal. (b)[top] 37-term Daub4 approximation. (a)[bottom] 257-term Fourier cosine
series approximation. (b)[bottom] Highest level Daub4 wavelet coefficients of signal.
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And, for L > 2, equations (9) and (12) yield ad-
ditional equations similar to the ones in (15).
There is a finite set of coefficients that solves
the equations in (14) and (15), namely, 

(16)
c0 =

1 +
√

3
4
√

2
, c1 =

3 +
√

3
4
√

2
,

c2 =
3−√3

4
√

2
, c3 =

1−√3
4
√

2

with all other ck = 0. Using these values of ck,
the following iterative solution of (11)

(17)

φ0(x) = 1[0,1)(x),

φn(x) =
∑
k∈Z

ck
√

2φn−1(2x− k),

for n ≥ 1,

converges to a continuous function φ(x) sup-
ported on [0,3]. It then follows from (12) that
the wavelet ψ(x) is also continuous and com-
pactly supported on [0,3]. This wavelet ψ we
have been referring to as the Daub4 wavelet.
The set of coefficients {ck} in (16) is the small-
est set of coefficients that produce a continuous
compactly supported scaling function. Other
sets of coefficients, related to higher values of
L, are given in [4] and [12].

Once the scaling function φ(x) and the
wavelet function ψ(x) have been found, then
we proceed as we did above in the Haar case. We
define the coefficients {αnk} and {βnk} by the
equations in (5), where now φ and ψ are the
Daubechies scaling function and wavelet, re-
spectively. The scaling identity (11) and the
wavelet definition (12) yield the following coef-
ficient relations:

(18)

αnk =
∑
m∈Z

cm αn+1
m+2k,

βnk =
∑
m∈Z

(−1)m c1−mαn+1
m+2k.

In order to perform calculations in L2[0,1), we
define the periodized wavelet ψ̃n,k and the pe-
riodized scaling function φ̃n,k by equations (3)
and (4), only now using the Daubechies wavelet
ψ and scaling function φ in place of the Haar
wavelet and scaling function. Theorem 2 re-
mains valid using these periodic wavelets, but
the proof is more involved (see section 4.5 of [5]
or section 3.11 of [8]). Therefore, for each
f ∈ L2[0,1) we can write 

(19) f (x) = α̃0
0 +

∞∑
n=0

2n−1∑
k=0

β̃nkψ̃n,k(x),

where α̃0
0 =

∫ 1
0 f (x)dx and β̃nk =∫ 1

0 f (x)ψ̃n,k(x)dx . We also define the coefficients

α̃nk by α̃nk =
∫ 1
0 f (x)φ̃n,k(x)dx. And, we periodi-

cally extend f with period 1, also denoting this
periodic extension by f. Then, for n ≥ 0 and
k = 0,1, . . . ,2n − 1, we have

(20)

α̃nk =
∫ 1

0
f (x)2n/2

∑
j∈Z

φ
(
2n(x + j)− k) dx

=
∑
j∈Z

∫ j+1

j
f (x− j)2n/2φ(2nx− k)dx

= αnk.

Similar arguments show that β̃nk = βnk and
α̃nk+2n = α̃nk and β̃nk+2n = β̃nk for n ≥ 0 and
k = 0,1, . . . ,2n − 1. After periodizing (11) and
(12), it follows that

(21)

α̃nk =
∑
m∈Z

cm α̃n+1
m+2k,

β̃nk =
∑
m∈Z

(−1)m c1−m α̃n+1
m+2k.

Remark. In the section “The Haar Wavelet” we
saw, for the Haar wavelet ψ ,  that
ψ̃n,k(x) = 2n/2ψ(2nx− k) for n ≥ 0 and
k = 0,1, . . . ,2n − 1. Almost exactly the same re-
sult holds for the Daubechies wavelets. For in-
stance, if ψ is the Daub4 wavelet, then ψ is sup-
ported on [0,3]. It follows, for n ≥ 2, that on the
unit interval ψ̃n,0 is supported on [0,3 · 2−n]. On
the unit interval, we then have
ψ̃n,k(x) = 2n/2ψ(2nx− k) for k = 0,1, . . . ,2n − 3.
Hence, for n ≥ 2, the periodized Daub4 wavelets
ψ̃n,k are identical in L2[0,1) with the wavelet
functions 2n/2ψ(2nx− k) ,  except when
k = 2n − 2 and 2n − 1. Similar results hold for all
the Daubechies wavelets.

We can discretize the series in (19) by analogy
with the Haar series. The coefficient relations in
(21) yield a fast wavelet transform, W, an or-
thogonal matrix defined by

W = (W2 ⊕ IM−2)

· · · (PM/2 ⊕ IM/2) (WM/2 ⊕ IM/2) PM WM

where each matrix WN is an N ×N orthogonal
matrix (as follows from (13) and the second equa-
tion in (14)). The matrix WN is used to produce
the (N − 1)st level coefficients {α̃N−1

k } and
{β̃N−1
k } from the Nth level scaling coefficients

{α̃Nk } as follows:

WN
[
α̃N0 , . . . , α̃

N
2N−1

]T

=
[
α̃N−1

0 , β̃N−1
0 , . . . , α̃N−1

2N−1−1, β̃
N−1
2N−1−1

]T
.
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If we use the coefficients c0, c1, c2, c3 defined
in (16), then for N > 2, WN has the following
structure :

For N = 2,W2 =
( c2+c0 c3+c1

c1+c3 −c0−c2

)
.  For other

Daubechies wavelets, there are other finite co-
efficient sequences {ck}, and the matrices WN
are defined similarly. The permutation matrix PN
is the same one that we defined for the Haar
transform and is used to sort the (N − 1)st level
coefficients so that WN−1 can be applied to the
scaling coefficients {α̃N−1

k }.
As initial data for the wavelet transform we

can, as we did for the Haar transform, use dis-
crete data of the form {fj}M−1

j=0 . The equations
in (15) then provide a discrete analog of the zero
moment conditions in (9) [for L = 2]; hence the
wavelet coefficients will be 0 where the data is
linear. In the last section, we saw how this can
produce effective compression of signals when
just the 0th and 1st moments of ψ are 0.

It is often the case that the initial data are val-
ues of a measured signal, i.e. {fk} = {F (xk)} , for
xk = k2−n, where F is a signal obtained from a
measurement process. As shown in the previous
section, we can interpret the behavior of the dis-
crete case based on properties of the function
F . A measured signal F is often described by a
convolution: F (x) =

∫∞
−∞ g(t)µ(x− t)dt, where g

is the signal being measured and µ is called the
instrument function. Such convolutions generally
have greater regularity than a typical function
in L2(R). For instance, if g ∈ L1(R) and is sup-
ported on a finite interval and µ = 1[−r ,r ] for
some positive r , then F is continuous and sup-
ported on a finite interval. By a linear change of
variables, we may then assume that F is sup-
ported on [0,1]. The data {F (xk)} then provide
approximations for the highest level scale coef-
ficients {α̃Rk } . If we assume that F has period 1,
then

α̃Rk = 2−R/2
∫∞
−∞
F (x) 2R φ

(
2R(x− xk)

)
dx

≈ CMF (xk) .

Here we have replaced 1/
√

2R by the scale fac-
tor CM and used

∫∞
−∞
F (x) 2R φ(2R(x− xk))dx ≈ F (xk) .

This approximation will hold for all period 1 con-
tinuous functions F and will be more accurate the
larger the value of 2R =M .

The higher the order of a Daubechies wavelet,
the more of its moments are zero. A Daubechies
wavelet of order 2L is defined by 2L nonzero coef-
ficients {ck}, has its first L moments equal to zero,
and is supported on the interval [0,2L− 1]. Gener-
ally speaking, the more moments that are zero, the
more wavelet coefficients that are nearly vanishing
for smooth functions F . This follows from consid-
ering Taylor expansions. Suppose F (x) has an L-
term Taylor expansion about the point xk = k2−n.
That is,

F (x) =
L−1∑
j=0

1
j !
F (j)(xk) (x− xk)j

+
1
L!
F (L)(tx) (x− xk)L

where tx lies between x and xk. Suppose also that
ψ is supported on [−a,a] and that ψ has its first L
moments equal to 0 and that |F (L)(x)| is bounded
by a constant B on [(k− a)2−n, (k + a)2−n]. It then
follows that

(22) |β̃nk| ≤
B√

L + 1/2L!

( a
2n

)L+1/2
.

This inequality shows why ψ(x) having zero mo-
ments produces a large number of small wavelet co-
efficients. If F has some smoothness on an interval
(c, d), then wavelet coefficients β̃nk corresponding to
the basis functions ψ (2n(x− xk)) whose supports
are contained in (c, d) will approach 0 rapidly as n
increases to ∞.

In addition to the Daubechies wavelets, there is
another class of compactly supported wavelets called
coiflets. These wavelets are also constructed using
the method outlined above. A coiflet of order 3L is
defined by 3L nonzero coefficients {ck} and has its
first L moments equal to zero and is supported on
the interval [−L,2L− 1]. A coiflet of order 3L is dis-
tinguished from a Daubechies wavelet of order 2L
in that, in addition to ψ having its first L moments
equal to zero, the scaling function φ for the coiflet
also has L− 1 moments vanishing. In particular,∫∞
−∞ xjφ(x)dx = 0, for j = 1, . . . , L− 1. For a coiflet of

order 3L , supported on [−a,a], an argument simi-
lar to the one that proves (22) shows that

|α̃Rk − CMF (xk)| ≤ B√
L + 1/2L!

( a
2R

)L+1/2
.

This inequality provides a stronger theoretical jus-
tification for using the data {CMF (xk)} in place of
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the highest level scaling coefficients, beyond
the argument we gave above for Daubechies
wavelets. The construction of coiflets was first
carried out by Daubechies and named after Coif-
man (who first suggested them).

Compression of Signals
One of the most important applications of
wavelet analysis is to the compression of signals.
As an example, let us use a Daub4 series to com-

press the signal {fj = F (j/1024)}1023
j=0 where

F (x) = − log |x− 0.2|. See Figure 5(a)[top]. For
this signal, a partial sum containing 99% of the
energy required only 37 coefficients (see Figure
5(b)[top]). It certainly provides a visually ac-
ceptable approximation of {fj}. In particular, the
sharp maximum in the signal near x = 0.2 seems
to be reproduced quite well. The compression
ratio is 1024: 37 ≈ 27: 1, which is an excellent re-
sult considering that we also have 99% accu-
racy. In addition, wavelet analysis has identi-
fied the singularities of F . Notice in Figure
5(b)[bottom] the peak in the wavelet coefficients
is near x = 0.2, where F has a singularity, and
the largest wavelet coefficient is near x = 1,
where the periodic extension of F has a jump dis-
continuity.

Turning to Fourier series, since the even pe-
riodic extension is continuous, we used a discrete
Fourier cosine series to compress this signal. In
Figure 5(a)[bottom] we show a 257-term discrete
Fourier cosine series partial sum for {fj}. Even
using seven times as many coefficients as the
wavelet series, the cosine series cannot repro-
duce the sharp peak in the signal. Better results
could be obtained in this case by either seg-

menting the interval and performing a cosine ex-
pansion on each segment, or by using a smoother
version of the same idea involving local cosine
bases [3, 9, 12, 1, 5].

One way to quantify the accuracy of these
approximations is to use relative R.M.S. differ-
ences. Given two sets of data {fj}M−1

j=0 and
{gj}M−1

j=0 , their relative R.M.S. difference, 

relative to {fj}, is defined by

D(f , g) =

√√√√√M−1∑
j=0

|fj − gj |2
/√√√√√M−1∑

j=0

|fj |2 .

For the example above, if we denote the wavelet
approximation by fw ,  then D(f , fw ) =
9.8× 10−3. For the Fourier cosine series ap-
proximation, call it f c ,  we have
D(f , f c ) = 2.7× 10−2. A rule of thumb for a vi-
sually acceptable approximation is to have a rel-
ative R.M.S. difference of less than 10−2. The ap-
proximations in this example are consistent with
this rule of thumb.

We can also do more localized analysis with
R.M.S. differences. For example, over the subin-
terval [.075, .325] centered on the singularity
of F , we find that D(f , fw ) = 9.7× 10−3 and
D(f , f c ) = 3.2× 10−2. These numbers confirm
our visual impression that the wavelet series
does a better job reproducing the sharp peak in
the signal. Or, using the subinterval [.25, .75], we
get D(f , fw ) = 1.0× 10−2 and D(f , f c ) =
3.3× 10−3, confirming our impression that both
series do an adequate job approximating {fj}
over this subinterval.

Figure 6. (a)[top] Signal. (b)[top] Signal’s coiflet30 transform, 7th level coefficients lie above the dotted
line. (b)[middle] 7th level coefficients. (a)[bottom] Signal with added noise. (b)[bottom] Noisy signal’s
coiflet30 transform. The horizontal lines are thresholds equal to ±0.15.
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Although in the examples we have discussed
so far Fourier analysis did not compress the sig-
nals very well, we do not wish to create the im-
pression that this will always be true. In fact, if
a signal is composed of relatively few sinusoids,
then Fourier analysis will provide very good
compression. For example, consider the signal
{fj = f (j/1024)}1023

j=0 where f (x) is defined in (1)
with ν = 280. The Fourier coefficients for f are
graphed in Figure 1(b)[top]. They tend rapidly to
0 away from the frequencies ±280; hence the
signal is composed of relatively few sinusoids.
By computing a Fourier series partial sum that
uses only the 122 Fourier coefficients whose
frequencies are within ±30 of ±280, we ob-
tained a signal g that was visually indistin-
guishable from the original signal. In fact,
D(f , g) = 5.1× 10−3. However, by compressing
{fj} with the largest 122 Daub4 wavelet coef-
ficients, we obtained D(f , fw ) = 2.7× 10−1 and
the compressed signal fw was only a crude ap-
proximation of the original signal. The reason
that compactly supported wavelets perform
poorly in this case is that the large number of
rapid oscillations in the signal produce a corre-
spondingly large number of high magnitude
wavelet coefficients at the highest levels. Con-
sequently, a significant fraction of all the wavelet
coefficients are of high magnitude, so it is not
possible to significantly compress the signal
using compactly supported wavelets. This ex-
ample illustrates that wavelet analysis is not a
panacea for the problem of signal compression.
In fact, much work has been done in creating
large collections of wavelet bases and Fourier
bases and choosing for each signal a basis which
best compresses it [12, 9, 3, 5].

Signal Denoising
Wavelet analysis can also be used for removing
noise from signals. As an example, we show in
Figure 6(a)[top] a discrete signal {f (j/1024)}1023

j=0
where f (x) is defined by formula (1) with ν = 80.
Each term of the form

(5 cos 2πνx)e−640π (x−k/8)2

we shall refer to as a blip. Notice that each blip
is concentrated around x = k/8 , since
e−640π (x−k/8)2 rapidly decreases to 0 away from
x = k/8. This signal can be interpreted as rep-
resenting the bit sequence 1 0 1 1 0 1 1. In Figure
6(a)[bottom] we show this signal after it has
been corrupted by adding noise. In Figure
6(b)[top] we show the coiflet30 wavelet coeffi-
cients for the original signal. The rationale for
using wavelets to remove the noise is that the
original signal’s wavelet coefficients are closely
correlated with the points near x = k/8 where the
blips are concentrated. To demonstrate this, we
show in Figure 6(b)[middle] a graph of the 7th

level wavelet coefficients {β̃7
k}

corresponding to the points {k2−7}27−1
k=0 on the

unit interval. Comparing this to Figure 6(a)[top],
we can see that the positions of this level’s
largest magnitude wavelet coefficients are closely
correlated with the positions of the blips. Simi-
lar graphs could also be drawn for other levels,
but the 7th level coefficients have the largest
magnitude. In Figure 6(b)[bottom] we show the
coiflet30 transform of the noisy signal. In spite
of the noise, the 7th level coefficients clearly
stand out, although in a distorted form. By in-
troducing a threshold, in this case 0.15, we can
retain these 7th level coefficients and remove

Figure 7. (a)[top] Denoised signal using wavelet analysis. (a)[bottom] Denoised signal using Fourier
analysis. (b)[top] Fourier coefficients of noisy signal and filter function. (b)[middle] Moduli-squared of

Fourier coefficients of original signal. (b)[bottom] Moduli-squared of Fourier coefficients of wavelet
denoised signal. 
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most of the noise. In Figure 7(a)[top] we show
the reconstructed signal obtained by computing
a partial sum using only those coefficients whose
magnitudes do not fall below 0.15. This recon-
struction is not a flawless reproduction of the
original signal, but nevertheless the amount of
noise has been greatly reduced, and the bit se-
quence 1 0 1 1 0 1 1 can be determined.

In Figure 7(a)[bottom] we show the denoised
signal obtained by filtering the Fourier coeffi-
cients of the noisy signal (see Figure 7(b)[top])
using the method of denoising described in the
section “Frequency Information, Denoising”. In
contrast to the wavelet denoising, the Fourier de-
noising has retained a significant amount of
noise in the spaces between the blips. The source
of this retained noise is that most of the origi-
nal noise’s Fourier coefficients are of uniform
magnitude distributed across all frequencies.
Consequently, the filter preserves noise coeffi-
cients corresponding to frequencies that were
not present in the original signal. These coeffi-
cients generate sinusoids that oscillate across the
entire interval [0,1]. The noise’s wavelet coeffi-
cients also have almost uniform magnitude, but
the thresholding process eliminates them all,
except the ones modifying the 7th level coeffi-
cients of the original signal. Since these coeffi-
cients’ wavelet basis functions are compactly
supported, this causes distortions in the recov-
ered signal that are limited to neighborhoods of
the positions of the 7th level coefficients. Con-
sequently, there is still noise distorting the blips,
but very little noise in between them.

It is also interesting to observe that the
wavelet reconstructed signal and the original
signal have similar frequency content. In Figure
7(b)[middle] and Figure 7(b)[bottom], we have
graphed the moduli-squared of the Fourier co-
efficients of the original signal and of the wavelet
denoised signal, respectively. These graphs show
that the frequencies of the wavelet reconstruc-
tion are, like the frequencies of the original sig-
nal, concentrated around ±80 with the highest
magnitude frequencies located precisely at ±80.
This shows that the coiflet30 wavelet has the abil-
ity to extract frequency information. Much work
has been done in refining this ability, including
the development of another class of bases called
wavelet packets [12, 9, 3, 5].

Conclusion
In this paper we have tried to show how the two
methodologies of Fourier analysis and wavelet
analysis are used for various kinds of work. Of
course, we have only scratched the surface of
both fields. Much more information can be found
in the references and their bibliographies.
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