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Fourier Transform

The Fourier Transform can be defined for signals that are

• Discrete or continuous in time

• Finite or infinite duration

• Provided we denote the variable in time domain as x(t), or x(n),
the transformed variables in frequency domain are
correspondingly X(jω) or X(k). This unification results in four
cases:
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An overview of Fourier transforms
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An overview of discrete Fourier Transform

The DFT consists of inner produce of the input signal x(n) with
sampled complex sinusoidal sections wkn

N = ej2πnk/N

X(k) = 〈x ,wk〉 =

N−1
∑

n=0

x(n)e−j2πnk/N , k = 0, 1, 2, . . . ,N − 1
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An overview of discrete Fourier Transform

By collecting the DFT output samples into a column vector, we have
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Finally we can write matrix representation as

X = W∗

Nx. (1)
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An overview of discrete Fourier Transform

The matrix W∗

N = WT
N denotes the Hermitian transpose of the

complex matrix WN . It can be shown that

W∗

N × WN =
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= N 1

and consequently the inversion of the eq. (1) is

x =
1
N

WNX. (2)
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Some practical comments

• If the number of digital samples in each time slice is a power of
2, one can use a faster version of the DFT known as the fast
Fourier transform (FFT)

• The FFT assumes that the samples being analyzed comprise
one cycle of a periodic wave. In most cases it is not the case
and analysis will contain many spurious frequencies not actually
present in the signal.

• Sample fast enough and long enough

• To recognize details in frequency domain use spectral
interpolation.
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What is aliasing?

• It is easiest to describe aliasing in terms of a visual sampling
system we all know and lovemovies. If you have ever watched a
western and seen the wheel of a rolling wagon appear to be
going backwards, you have witnessed aliasing. The movie’s
frame rate is not adequate to describe the rotational frequency
of the wheel, and our eyes are deceived by the misinformation.

• The Nyquist Theorem tells us that we can successfully sample
and play back frequency components up to one-half the
sampling frequency. Aliasing is the term used to describe what
happens when we try to record and play back frequencies higher
than one-half the sampling rate.
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What is aliasing?

• Consider a digital audio system with a sample rate of 48 KHz,
recording a steadily rising sine wave tone. At lower frequency,
the tone is sampled with many points per cycle. As the tone
rises in frequency, the cycles get shorter and fewer and fewer
points are available to describe it. At a frequency of 24 KHz, only
two sample points are available per cycle, and we are at the limit
of what Nyquist says we can do.

• Still, those two frequency points are adequate, in a theoretical
world, to recreate the tone after conversion back to analog and
low-pass filtering.
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What is aliasing?

• But, if the tone continues to rise, the number of samples per
cycle is not adequate to describe the waveform, and the
inadequate description is equivalent to one describing a lower
frequency tone this is aliasing.

• In fact, the tone seems to reflect around the 24 KHz point. A 25
KHz tone becomes indistinguishable from a 23 KHz tone. A 30
KHz tone becomes an 18 KHz tone.
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Aliasing due to a slow sampling

The following figure illustrates what happens if a signal is sampled at
regular time intervals that are slightly less often than once per period
of the original signal.
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Zero padding

• Zero padding consists of appending zeros to a signal. It maps a
length N signal to a length M > N signal, but M need not be an
integer multiple of N:

• Zero padding in the time domain gives spectral interpolation in
the frequency domain. Similarly, zero padding in the frequency
domain gives bandlimited interpolation in the time domain. This
is how ideal sampling rate conversion is accomplished.

• Usually we use DFT which requires the signals of length M = 2m

which means we chose the number of zeros equal to 2m − N.
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How it works?
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Example 1: Zero padding

Example 1: Using reasonable resolution in frequency domain
with zero padding in the time domain, determine the frequency
of the periodic signal defined as

xs = sin(32.044245t) + sin(37.070793t).

The discrete signal has 32 samples xn produced by sampling
frequency f0 = 1/32.

prof. Miroslav Vlcek Lecture 5



Properties of Fourier Transform
Aliasing

Zero Padding in discrete Fourier Transform

Example 1: Zero padding

clear
t=linspace(0,1,1001);
xs=sin(32.044245*t)+sin(37.070793*t);
N = 32;
f0 = 1/N;
k = 0:1:N-1;
x1 = sin(32.044245*f0*k) + sin(37.070793*f0*k);
figure(1)
subplot(3,1,1)
plot(t,xs,’LineWidth’,1.5,’Color’,[1 0 0]);
subplot(3,1,2)
% total lenghth is 64
plot(abs(fft([x1 zeros(1,32)]))) hold on;
stem(abs(fft([x1 zeros(1,32)]))); hold off;
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Example 1: Zero padding

subplot(3,1,3)
% total lenghth is 512
plot(abs(fft([x1 zeros(1,480)]))) hold on;
stem(abs(fft([x1 zeros(1 480)]))); hold off;
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Zero padding in DFT
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MATLAB project: step 1

1 Start MATLAB. Load in the ”train” signal with command
load(’train’);. Note that the audio signal is loaded into a
variable y and the sampling rate into Fs.
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MATLAB project: steps 2-5

2 The sampling rate is 8192 Herz, and the signal contains 12 880
samples. If we consider this signal as sampled on an interval
(0,T ), then T = 12880/8192 ≈ 1.5723seconds.

3 Compute the DFT of the signal with Y=fft(y);. Display the
magnitude of the Fourier transform with plot(abs(Y)) The
DFT is of length 12 880 and symmetric about center.

4 Since MATLAB indexes from 1, the DFT coefficient Yk is actually
Y(k+1) in MATLAB !

5 You can plot only the first half of the DFT with
plot(abs(Y(1:6441)). Compute the actual value of each
significant frequency in Herz.
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MATLAB project: steps 6-9

6 You can plot only the first half of the DFT with
plot(abs(Y(1:6441))). Use the data cursor on the plot
window to pick out the frequency and amplitude of the largest
component. Compute the actual value of each significant
frequency in Herz.

7 Let f1, f2, f3 denote these frequencies in Herz, and let A1,A2,A3

denote the corresponding amplitudes. define these variables in
MATLAB.

8 Synthetize a new signal using only these frequencies, sampled
at 8192 Herz on the interval (0, 1.5) with t=[0:1/8192:1.5];
ys= (A1*sin(2*pi*f1*t)+
A2*sin(2*pi*f2*t)+A3*sin(2*pi*f3*t))/(A1+A2+A3);

9 Play the original train sound with sound(y) and the synthesized
version sound(ys). Compare the quality!
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MATLAB project: steps 10-11

10 Can you explore another frequency components? If it is so,
follow the steps 7 - 9 and hear the result.

11 We can study a simple approach to compressing an audio
signal. The idea is to transform the audio signal in the frequency
domain with DFT. We then eliminate the insignificant frequencies
by thresholding . It is by zeroing out any Fourier coefficients
below a given threshold. This becomes a compressed version of
the signal. To recover an approximation to the signal, we use
inverse IDFT to take the limited spectrum back to the time
domain.
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MATLAB project: steps 12-15

12 Thresholding: we compute the maximum value of Yk with
m=max(abs(Y)). Then we choose a thresholding parameter
∈ (0, 1), for example, thresh=0.1

13 We zero out all frequencies in Y that fall below a value
thresh*M. It can be done with
Ythresh=(abs(Y)>m*thresh).*Y;. Plot the thresholded
transform with plot(abs(Ythresh))).

14 Compression ratio is fraction of Fourier coefficients which
survived the cut sum(abs(Ythresh)>0)/12880.

15 Recover the original time domain with inverse transform
yt=real(ifft(Ytresh)); and play the compressed audio
with sound(yt).
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MATLAB project: steps 16-18

16 The real command truncates imaginary round-off error in the
ifft procedure.

17 You can compute the distorsion (as a percentage) of the
compressed signal using formula

‖y − yt‖2

‖y‖2

The norm(y) command in MATLAB computes the standard
Euclidean norm of the vector ‖y‖.

18 Repeat the computation for threshold values thresh=0.5,
thresh=0.05 and thresh=0.005. In each case compute the
compression ratio, the distorsion and play the audio signal and
rate its quality.
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