Induction and Inductance

Magnetic flux

$$\Phi = \iint_{S} \vec{B} \cdot d\vec{S}$$

$$\iint\limits_{S} \vec{B} \cdot d\vec{S} = 0$$

$$[\Phi] = m^2 .kg. s^{-2}. A^{-1} = Wb$$

Faraday's law of induction

$$\mathcal{E} = -\frac{d\Phi}{dt}$$

The magnitude of the emf ε induced in a conducting loop is equal to the rate at which the magnetic flux Φ through that loop changes with time.

Lenz's law = induced emf tends to oppose the flux change

$$\Phi = BS\cos\varphi = BS\cos\omega t$$

$$\mathcal{E} = -\frac{d\Phi}{dt} = -\frac{d}{dt} (BS\cos\omega t) = BS\omega\sin\omega t$$

eddy (Foucault's) currents

https://phet.colorado.edu/sims/cheerpj/faraday/latest/faraday.html?simulation=generator

Inductors and Inductance

Self-induction

$$\Phi = Li$$

$$\mathcal{E} = -L\frac{di}{dt}$$

Self-induction of a solenoid

$$B = \mu_0 \frac{iN}{l}$$

$$\Phi = BNS$$

$$L = \mu_0 \frac{N^2 S}{l}$$

Mutual induction

$$\Phi_2 = L_2 i_2 + M_{12} i_1$$

$$M_{12} = M_{21}$$

$$\Phi_1 = L_1 i_1 + M_{21} i_2$$

$$\mathcal{E}_{1} = -\frac{d\Phi_{1}}{dt} = -L_{1}\frac{d\mathbf{i}_{1}}{dt} - M_{12}\frac{d\mathbf{i}_{2}}{dt}$$

RL circuit

$$R\mathbf{i} = \mathcal{E}_0 - L\frac{d\mathbf{i}}{dt}$$

$$L\frac{di}{dt} + Ri = \mathcal{E}_0$$

$$Li\frac{di}{dt} + Ri^2 = \mathcal{E}_0 i$$

$$p = u\mathbf{i} = L\mathbf{i}\frac{d\mathbf{i}}{dt}$$

$$dW = p dt = Li di$$

$$W = \int dW = \int_{0}^{i_{m}} Li \, di = \frac{1}{2} Li_{m}^{2}$$

$$W_m = \frac{1}{2}Li^2$$

Energy of magnetic field

Energy stored in inductor (solenoid)

$$W_m = \frac{1}{2}Li^2$$

$$L = \mu_0 \frac{N^2 S}{l}$$

$$W_{m} = \frac{1}{2} \mu_{0} N^{2} \frac{S}{l} i^{2}$$

$$B = \mu_0 \frac{Ni}{l}$$

$$W_m = \frac{1}{2} \frac{1}{\mu_0} B^2 Sl$$

Energy density of a magnetic field

$$w_m = \frac{W_m}{V} = \frac{1}{2} \frac{1}{\mu_0} B^2$$

Energy stored in a magnetic field

$$W_m = \int_V w_m dV$$

Alternating current

Periodic function (generation of emf by rotation) – harmonic current

$$i(t) = I_0 \sin(\omega t + \varphi_0)$$

emf function (phase shift φ)

$$u(t) = U_0 \sin(\omega t + \varphi_0 + \varphi)$$

driving angular frequency, phase shift φ (load dependent)

Effective value (RMS)

$$I_{ef} = I_0 \sqrt{\frac{1}{T} \int_0^T \sin^2(t) dt} = I_0 \frac{1}{\sqrt{2}}$$
 $\sin^2 \frac{x}{2} = \frac{1 - \cos x}{2}$

Power in AC circuits $P = UI \cos \varphi$

$$P = UI \cos \varphi$$

power factor $\cos \varphi$