
Photon - Quantum of Light



Thermal radiation
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Radiant flux

Radiant exitance

Stefan-Boltzmann law

Black body – all electromagnetic radiation is absorbed

level of radiation equals to absorption (ε = α = 1)
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Power emitted, reflected, transmitted, absorbed
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Thermal radiation laws - summary

Stefan-Boltzmann law
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function extrema

Planck’s law (spectral density function)
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Wien's displacement law (position of maximum)
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Photoelectric effect
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1 eV = 1,60217733ꞏ10–19 J

HRW: Ch38

Work function Φ



Electrons and matter waves



de Broglie relation
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Wave of the particle

Electromagnetic waves exhibit duality:

every particle or quantum entity can be described as particle or wave

lattice parameter
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http://www.matter.org.uk/diffraction/electron/electron_diffraction.htm

Electron diffraction patterns of the icosahedral Zn-Mg-Ho quasicrystals
http://sato.issp.u-tokyo.ac.jp/topics.html

https://blog.phenom-world.com/sem-electrons
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Electron diffraction – double slit experiment

diffraction of waves
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macroscopic particles

Electron diffraction – double slit experiment
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diffraction of electrons

Electron diffraction – double slit experiment
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Complementarity principle

Objects have certain pairs of complementary properties which 
cannot all be observed or measured simultaneously.

no electron detection – diffraction of electrons
electron detection – loss of wave diffraction

Diffraction of electrons or photon-electron scattering
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Electron microscopy
Electron-matter interaction
magnification 103 – 105

resolution limit at 0.1 nm

Heisenberg’s Uncertainty Principle

It is not possible to measure the position and the momentum 
(speed) of a particle simultaneously with unlimited precision.
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Wave function and Schrödinger’s equation
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The probability of detecting a particle in a small volume dV = dx
dy dz centered on a given point in a matter wave is proportional to 
the value of |Ψ|2 at that point.

one-dimensional time-independent Schrödinger’s equation 

solution – stationary states of particle
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The probability density is a constant for any point along the x axis.

No particle position is preferred.

Untrapped (free) particle

Energies of trapped particle

The probability density is dependent on position.

solution leads to quantization – existence of discrete 
states with discrete energies.
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Wave functions and probability states for electron
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