Hydrogen atom – Bohr model

- Planetary model = electron orbits the central proton with angular momentum $L = n\hbar$, where *n* is quantum number (allowed orbits)
- Quantizing of energy: electron can change energy by "jumping" between allowed energies (absorption, emission)
- Basic conclusions:
 - Orbital radius: $r_n = n^2 r_1$
 - Orbital energy: $E_n = E_1/n^2$ E_1 ground state energy ($E_1 < E_2 < E_3$)
 - Most stable state E_1, r_1 = ground state
 - Higher energy states = excited state

Hydrogen atom – Energy changes

• E_i = initial energy state E_f = final energy state change of energy: $\Delta E = E_i - E_f$

$$h\nu = h\frac{c}{\lambda} = \left|E_f - E_i\right|$$

- This model works for hydrogen atom well, however, energies in other atoms cannot be determined
- Bohr model combines quantum description with simple mechanical description

$$\Delta E = \frac{E_1}{n_f^2} - \frac{E_1}{n_i^2} \longrightarrow \frac{1}{\lambda} = \frac{E_1}{hc} \left[\frac{1}{n_f^2} - \frac{1}{n_i^2} \right] = R \left[\frac{1}{n_f^2} - \frac{1}{n_i^2} \right]$$

Hydrogen spectrum – emission and absorption

Spectral lines – changes with type of atom

 $\sigma = \frac{1}{\lambda} = R_{\infty} \left(\frac{1}{2^2} - \frac{1}{n^2} \right)$ Balmer series

$$\sigma = \frac{1}{\lambda} = R_{\infty} \left(\frac{1}{1^2} - \frac{1}{n^2} \right)$$
 Lyman series

$$\sigma = \frac{1}{\lambda} = R_{\infty} \left(\frac{1}{3^2} - \frac{1}{n^2} \right)$$

Paschen series

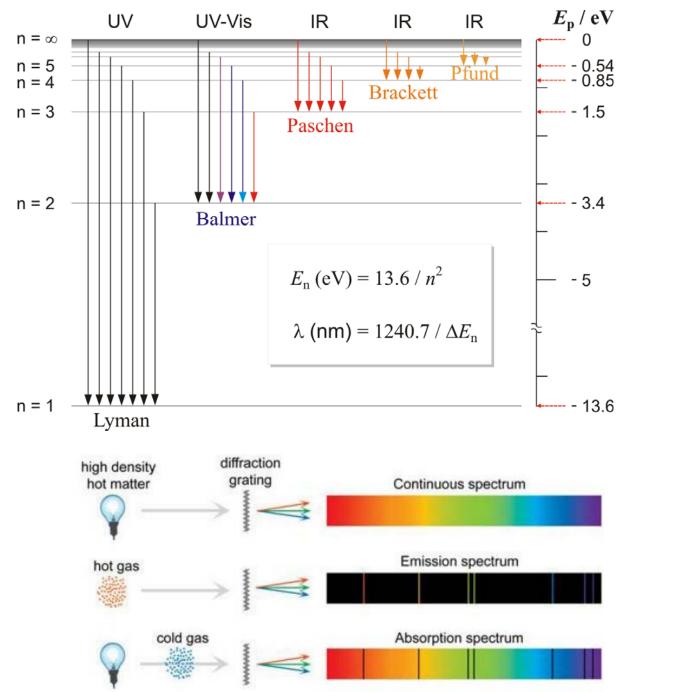
$$\sigma = \frac{1}{\lambda} = R_{\infty} \left(\frac{1}{4^2} - \frac{1}{n^2} \right)$$
 Brackett series

$$\sigma = \frac{1}{\lambda} = R_{\infty} \left(\frac{1}{5^2} - \frac{1}{n^2} \right)$$

Pfund series

$$\sigma = \frac{1}{\lambda} = R_{\infty} \left(\frac{1}{s^2} - \frac{1}{n^2} \right), \ n > s$$

 $R_{\infty} = 1,097 \cdot 10^7 \text{ m}^{-1}$ Rydberg constant



HRW: Ch39

Schrödinger's equation and Hydrogen atom

3D electron trap – 3 quantum numbers

main (principal) quantum number nradial part of the wave equation = quantizing of energies

orbital quantum number *l* polar part of the wave equation = magnitude of angular momentum

Orbital magnetic quantum number m_l azimuthal part of the wave equation = orientation of the angular momentum vector in the space

discrete energy states
$$E_n = -\frac{me^4}{32\pi^2\varepsilon_0^2\hbar^2}\frac{1}{n^2}$$

$$n \ge 1$$
 ($n = 1, 2, 3, ...$)

$$l \le n-1$$
 $(l = 0, 1, 2, ..., n-1)$

$$|m_l| \le l$$
 $(m_l = -l, -l+1, ..., -1, 0, 1, ..., l-1, l)$

Spin angular momentum

every electron has intrinsic spin angular momentum \vec{S}

Spin magnitude is quantized – spin quantum number $s = \frac{1}{2}$

 S_z spin component is quantized – – spin magnetic quantum number $m_s = \pm \frac{1}{2}$

Pauli exclusion principle

no two electrons in a trap can have the same quantum state (= set of quantum numbers) => n, l, m_l , m_s differs

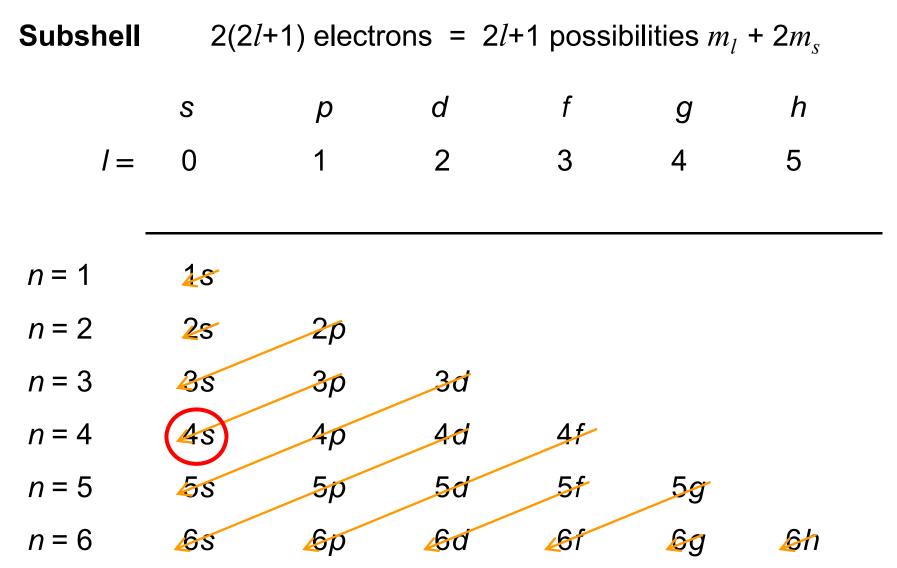
fermionshalf-integer spinbosonszero or integer spin

proton, neutron, electron

Electron configurations

Principal quantum number <i>n</i> letter representation	-	 3 M	-	-	shells <i>n</i>
Orbital quantum number <i>l</i> letter representation		2 d			subshells <i>nl</i>

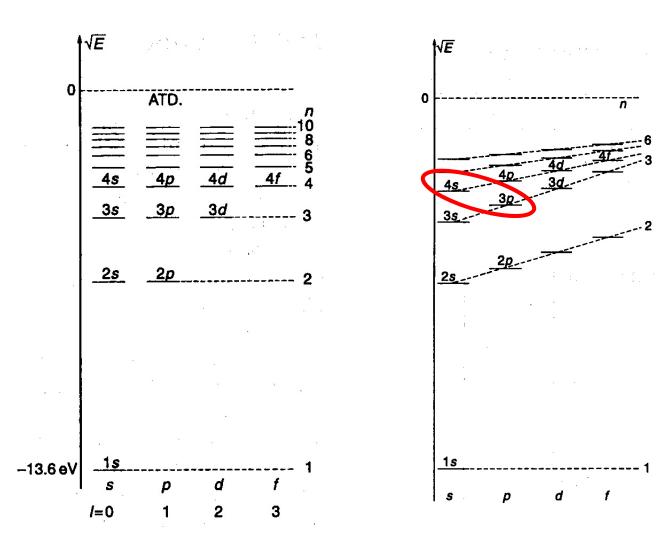
HRW: Ch40



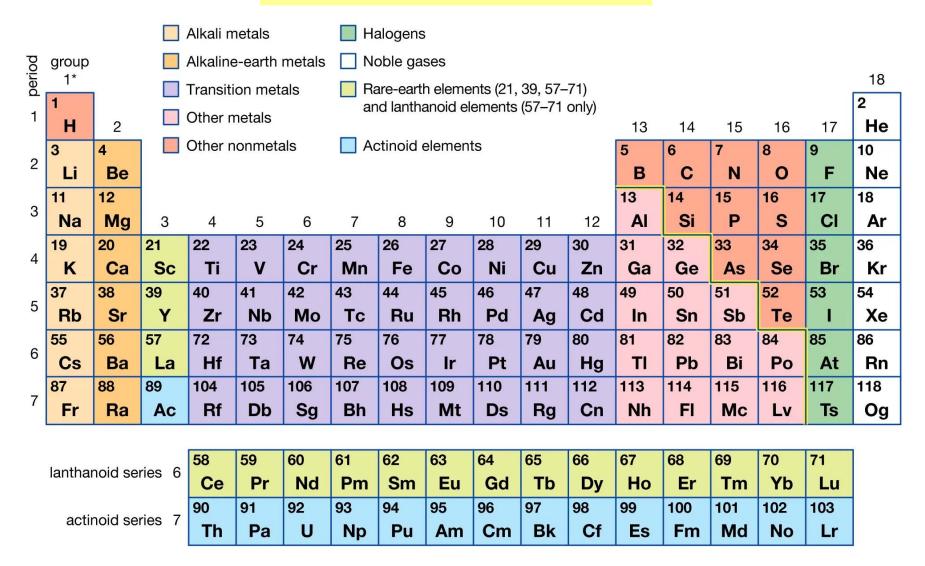
El. configuration 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s

hydrogen

other atoms



Periodic table of elements



closed or open subshell = different chemistry of atoms

Lasers

Process Before After $-E_x$ E_x hf None Absorption (a) $-E_0$ E_0 These are three ways that radiation E_x $-E_x$ hf (light) can interact Spontaneous (b)None emission with matter. The E_0 E_0 third way is the basis of lasing. E_x hf E_x hf Stimulated $(c) \mathbf{w}$ emission E_0 E_0 Radiation Matter Radiation Matter

HRW: Ch40

