# **Introduction to Solid State Physics**



# **Atomic structures**





(b)

- a) gases
- b) liquids
- c) amorphous solids
- d) crystalline solids





#### **Crystal structures**

Arrangement of equal spheres: close packing symetries interactions (bonds)

 $\vec{T} = u\vec{a} + v\vec{b} + w\vec{c}$  Translational vectors; indices of the point groups



| Bravais      | Parameters                                                                                       | Simple (P) | Volume       | Base         | Face         |
|--------------|--------------------------------------------------------------------------------------------------|------------|--------------|--------------|--------------|
| lattice      |                                                                                                  |            | centered (I) | centered (C) | centered (F) |
| Triclinic    | $a_1 \neq a_2 \neq a_3$ $\alpha_{12} \neq \alpha_{23} \neq \alpha_{31}$                          |            |              |              |              |
| Monoclinic   | $a_1 \neq a_2 \neq a_3$<br>$\alpha_{23} = \alpha_{31} = 90^\circ$<br>$\alpha_{12} \neq 90^\circ$ |            |              |              |              |
| Orthorhombic | $a_1 \neq a_2 \neq a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^\circ$                     |            |              |              |              |
| Tetragonal   | $a_1 = a_2 \neq a_3$<br>$\alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$                   |            |              |              |              |
| Trigonal     | $a_1 = a_2 = a_3$ $\alpha_{12} = \alpha_{23} = \alpha_{31} < 120^{\circ}$                        |            |              |              |              |
| Cubic        | $a_1 = a_2 = a_3 \\ \alpha_{12} = \alpha_{23} = \alpha_{31} = 90^{\circ}$                        |            |              |              |              |
| Hexagonal    | $a_1 = a_2 \neq a_3$<br>$\alpha_{12} = 120^\circ$<br>$\alpha_{23} = \alpha_{31} = 90^\circ$      |            |              |              |              |



# **Miller indices**

Indexing of crystallographic directions and planes =

orientation of the unit cell in the space

- 1. Indices of crystallographic directions one specific direction [uvw] group of directions <uvw>
- 2. Indices of crystallographic planes one specific plane (hkl) group of planes {hkl}

Indexing of planes 
$$h: k: l = \frac{1}{r}: \frac{1}{s}: \frac{1}{t}$$



### Bonding in the solid matter



$$\vec{F} = -\operatorname{grad} W = -\frac{dW}{dr} \frac{\vec{r}}{|\vec{r}|}$$

 $\frac{dW}{dr} = 0 \Longrightarrow R_0$ 



for two atoms

$$W(r) = \frac{A}{r^m} - \frac{B}{r^n}$$

ion covalent metallic Van der Waals

# lon bond

ionization; electrostatic force Bonding energy 1,6·10<sup>-18</sup> J ·atom<sup>-1</sup>





### **Covalent bond**



sharing of electrons to form electron pairs

#### **Metallic bond**

(1,6 – 8)·10<sup>-19</sup> J ·atom<sup>-1</sup>



electron cloud = free floating electrons

I. – III. column of the periodic table

no preference in direction

=

solubility and compound formation

#### Van der Waals force



# Hydrogen bridge bonds

 $0,1 \text{ eV/atom} = 1,6 \cdot 10^{-20} \text{ J} \cdot \text{atom}^{-1}$ 

 $H_2O$  molecules



#### **Mixed bonds - classification**



# **Conductivity of solids**

resistivity  $\rho$ 

temperature coefficient of conductivity  $\alpha$ 

density of charge carriers *n* 

insulators = very high resistivity
semiconductors = low density of carriers
negative coefficient of conductivity
metals = positive coefficient of conductivity

#### **Energy levels in crystalline solids**

single-atom subshell – max. 2(2l + 1) of electrons two-atom system  $\neq$  **two** independent atoms energy levels will separate **into 2 levels lattice** - energy levels will form **bands and gaps** bands – allowed levels of energy (few eV) gaps – forbidden levels of energy







The Fermi energy of a given material is the energy of a quantum state that has the probability 0.5 of being occupied by an electron.



### Types of semiconductors

- intrinsic (pure)
- doped: n-type, p-type



# **Doped semiconductors**

Si + P = 1 extra electron in valence band (P is a "donor")



n-type semiconductor

# **Doped semiconductors**

Si + AI = 1 electron in valence band missing (AI is an "acceptor")



p-type semiconductor

#### HRW: Ch41



# *p-n* junction

HRW: Ch41

*p*–*n* junction, forward bias

electron-hole pairs recombination in narrow depletion zone



Photodiode, junction laser