01 - Coulomb's law (Ch. 21)

 $k = 1/4\pi\epsilon_0 = 8.99 \text{ N m}^2/\text{C}^2$

- 1) Of the charge Q initially on a tiny sphere, a portion q is to be transferred to a second, nearby sphere. Both spheres can be treated as particles and are fixed with a certain separation. For what value of q/Q will the electrostatic force between the two spheres be maximized?
 - 1. **THINK** After the transfer, the charges on the two spheres are Q-q and q.

EXPRESS The magnitude of the electrostatic force between two charges q_1 and q_2 separated by a distance r is given by the Coulomb's law (see Eq. 21-1):

$$F = k \frac{q_1 q_2}{r^2},$$

where $k = 1/4\pi\varepsilon_0 = 8.99 \times 10^9 \,\text{N} \cdot \text{m}^2/\text{C}^2$. In our case, $q_1 = Q - q$ and $q_2 = q$, so the magnitude of the force of either of the charges on the other is

$$F = \frac{1}{4\pi\varepsilon_0} \frac{q \mathbf{b} - q\mathbf{\zeta}}{r^2}.$$

We want the value of q that maximizes the function f(q) = q(Q - q).

ANALYZE Setting the derivative df/dq equal to zero leads to Q - 2q = 0, or q = Q/2. Thus, q/Q = 0.500.

LEARN The force between the two spheres is a maximum when charges are distributed evenly between them.

- 3) What must be the distance between point charge q_1 = 26.0 μ C and point charge q_2 = -47.0 μ C for the electrostatic force between them to have a magnitude of 5.70 N?
- 3. **THINK** The magnitude of the electrostatic force between two charges q_1 and q_2 separated by a distance r is given by Coulomb's law.

EXPRESS Equation 21-1 gives Coulomb's law, $F = k \frac{|q_1||q_2|}{r^2}$, which can be used to solve for the distance:

$$r = \sqrt{\frac{k |q_1||q_2|}{F}}$$
.

ANALYZE With F = 5.70 N, $q_1 = 2.60 \times 10^{-6} \text{ C}$ and $q_2 = -47.0 \times 10^{-6} \text{ C}$, the distance between the two charges is

$$r = \sqrt{\frac{k |q_1||q_2|}{F}} = \sqrt{\frac{\left(8.99 \times 10^9 \,\mathrm{N} \cdot \mathrm{m}^2/\mathrm{C}^2\right) \left(26.0 \times 10^{-6} \,\mathrm{C}\right) \left(47.0 \times 10^{-6} \,\mathrm{C}\right)}{5.70 \,\mathrm{N}}} = 1.39 \;\mathrm{m}.$$

LEARN The electrostatic force between two charges falls as $1/r^2$. The same inverse-square nature is also seen in the gravitational force between two masses.

- 6) Two equally charged particles are held $3.2\cdot10^{-3}$ m apart and then released from rest. The initial acceleration of the first particle is observed to be 7.0 m/s^2 and that of the second to be 9.0 m/s^2 . If the mass of the first particle is $6.3\cdot10^{-7}$ kg, what are (a) the mass of the second particle and (b) the magnitude of the charge of each particle?
- 6. (a) With a understood to mean the magnitude of acceleration, Newton's second and third laws lead to

$$m_2 a_2 = m_1 a_1 \Rightarrow m_2 = \frac{63 \times 10^{-7} \text{ kg} 10 \text{ m/s}^2}{9.0 \text{ m/s}^2} = 4.9 \times 10^{-7} \text{ kg}.$$

(b) The magnitude of the (only) force on particle 1 is

$$F = m_1 a_1 = k \frac{|q_1||q_2|}{r^2} = (8.99 \times 10^9 \,\mathrm{N \cdot m^2/C^2}) \frac{|q|^2}{(0.0032 \,\mathrm{m})^2}.$$

Inserting the values for m_1 and a_1 (see part (a)) we obtain $|q| = 7.1 \times 10^{-11}$ C.

- 14) Three particles are fixed on an x axis. Particle 1 of charge q_1 is at x = -a, and particle 2 of charge q_2 is at x = +a. If their net electrostatic force on particle 3 of charge +Q is to be zero, what must be the ratio q_1/q_2 when particle 3 is at (a) x = +0.500a and (b) x = +1.50a?
- 14. (a) The individual force magnitudes (acting on Q) are, by Eq. 21-1,

$$\frac{1}{4\pi\varepsilon_0} \frac{|q_1|Q}{\left(-a-a/2\right)^2} = \frac{1}{4\pi\varepsilon_0} \frac{|q_2|Q}{\left(a-a/2\right)^2}$$

which leads to $|q_1| = 9.0 |q_2|$. Since Q is located between q_1 and q_2 , we conclude q_1 and q_2 are like-sign. Consequently, $q_1/q_2 = 9.0$.

(b) Now we have

$$\frac{1}{4\pi\varepsilon_0} \frac{|q_1|Q}{(-a-3a/2)^2} = \frac{1}{4\pi\varepsilon_0} \frac{|q_2|Q}{(a-3a/2)^2}$$

which yields $|q_1| = 25 |q_2|$. Now, Q is not located between q_1 and q_2 ; one of them must push and the other must pull. Thus, they are unlike-sign, so $q_1/q_2 = -25$.