Seminary exercise Nr. 5 Systems of particles, collisions

- 1. A $1.2\,kg$ ball drops vertically onto the floor, hitting it with a speed of $25\,m\,s^{-1}$. The ball bounces back with an initial speed of $10\,m\,s^{-1}$. What impulse acts on the ball during the contact? If the ball is in contact with the floor for $0.02\,s$, what is the magnitude of the average force on the floor from the ball?
- 2. Consider two mass points m_1 and m_2 at a mutual distance d . Determine the position of the mass centre. What is the result if the masses are the same?
- 3. Three particles of masses $m_1 = 1.2 kg$, $m_2 = 2.5 kg$ and $m_3 = 3.4 kg$ form an equilateral triangle of edge length of 140 cm. Where is the centre of mass of this system?
- 4. A 3kg object moving at $8ms^{-1}$ in the positive direction of an x axis has a one-dimensional elastic collision with an object of mass M, initially at rest. After the collision the object of mass M has a velocity of $6ms^{-1}$ in the positive direction of the axis. What is the mass M?
- 5. A cart with mass $340\,g$ moving on a frictionless linear track at an initial speed of $1.2\,ms^{-1}$ undergoes an elastic collision with an initially stationary cart of unknown mass. After the collision, the first cart continues in its original direction at $0.66\,ms^{-1}$. What is the mass of the second cart? What is its speed after the impact? What is the speed of the two-cart centre of mass?
- 6. A bullet of mass $10\,g$ strikes a ballistic pendulum of mass $2\,kg$. The centre of mass of the pendulum rises a vertical distance of $12\,cm$. Assuming that the bullet remains embedded in the pendulum, calculate the initial speed of the bullet.
- 7. A 75 kg man rides on a 39 kg cart moving at a velocity of $2.3 m s^{-1}$. He jumps off with zero horizontal velocity relative to the ground. What is the resulting change in the velocity of the cart?
- 8. A skater of mass $70 \, kg$ stands on glassy ice. He puts himself in motion by firing horizontally a ball of mass $3 \, kg$ at a speed of $8 \, m \, s^{-1}$. How far will the skater move after firing the ball? The coefficient of kinetic friction between the ice and the skates is 0.02.
- 9. A wooden block with mass M=3kg is lying on an horizontal table. It is hit by a bullet with mass m=5g which moves horizontally. The bullet remains in the block after colliding with it. The block moves on the table to a distance d=25cm. The coefficient of kinetic friction is $\mu_k=0.2$. Find the initial speed of the bullet.