Seminary exercise Nr. 7

- 1. Define a continuum material point (a differential volume) and describe its properties in $x_{1,}x_{2,}x_{3}$ coordinate system. For a surface force acting in the direction of selected axis, specify the existing stresses and define the stress subscripts.
- 2. Define the Hooke's law for direct stress and shear stress. Specify the physical quantities including physical units. Describe the stress-strain curve.
- 3. A mine shaft elevator is hanging on a steel rope ($E=2.1\cdot10^{11}Pa$) with a diameter of $2.5\,cm$. The total mass of the cabin and the transported people is $650\,kg$. How does the steel rope extend when the lift is at a surface $12\,m$ below the motor of the elevator? How does the rope extend when the lift is at the bottom of a shaft $350\,m$ deep? Neglect the mass of the rope with respect to the mass of the cabin.
- 4. A solid copper cube has an edge length of $85.5\,cm$. How much stress must be applied to the cube to reduce the edge length to $85.0\,cm$? The elastic modulus of copper is $1.4\cdot10^{11}\,Pa$.
- 5. A tunnel of length $L=150\,m$, height $H=7.2\,m$, and width $W=5.8\,m$ (with a flat roof) is to be constructed at a depth $D=60\,m$ beneath the ground. The tunnel roof is to be supported entirely by square steel columns, each with a cross-sectional area of $A=960\,cm^2$. The mass of $1.0\,cm^3$ of the ground material is $2.8\,g$. What is the total mass of the ground material the columns must support? How many columns are needed to keep the compressive stress on each column at one-half of its ultimate strength ($\sigma_F=650\,MPa$)?
- 6. A horizontal aluminium rod with a diameter of $4.8 \, cm$ exits by $5.3 \, cm$ from a wall. An object with mass of $1200 \, kg$ is suspended from the end of the rod. The shear modulus of aluminium is $3 \cdot 10^{10} \, Pa$. Neglecting the mass of the rod, find the shear stress on the rod and the vertical deflection at the end of the rod.