Seminary exercise Nr. 10 Thermodynamics I – Heat capacity, Equation of state, Kinetic theory

For all exercises, let assume the following values:

- Avogadro's constant $N_{Av} = 6.022 \cdot 10^{23} mol^{-1}$
- gas constant $R = 8.31 \, J \, mol^{-1} K^{-1}$
- 1. A certain substance of mass 5kg has to be warmed up by $10\,^{\circ}C$. This process required $200\,kJ$ of heat. Determine the heat capacity and the specific heat capacity of the substance.
- 2. A certain amount of heat Q can warm up 20g of material A by $4^{\circ}C$ or 50g of material B by $2^{\circ}C$. Which material has the higher value of the specific heat capacity?
- 3. An aluminium flagpole is 33m high. By how much does its length increases as the temperature increases by $15\,^{\circ}C$? The linear thermal expansion coefficient of aluminium is $\alpha = 2.2 \cdot 10^{-5} \, K^{-1}$.
- 4. A mass of $20 \, kg$ was hanged on a vertically fixed steel wire of a length $1 \, m$ and diameter of $2 \, mm$. What temperature change would compensate the wire extension? The linear thermal expansion coefficient of steel is $\alpha = 1.2 \cdot 10^{-5} \, K^{-1}$ and its elastic modulus is $E = 2.1 \cdot 10^{11} \, Pa$.
- 5. A sample of pure titanium ^{48}Ti has a mass 50g . Determine the number of atoms and moles in the sample.
- 6. A sample of pure titanium has a mass 50g . The relative atomic mass of titanium is 47.867 . Determine the number of atoms and moles in the sample.
- 7. Two ice cubes of 50g each are dropped into 200g of water in a thermally insulated container. If the water is initially at $80\,^{\circ}C$, and the ice comes directly from a freezer at $-15\,^{\circ}C$, what is the final temperature at thermal equilibrium? The specific heat capacity of water and ice are $c_w = 4182 J k g^{-1} K^{-1}$ and $c_i = 2093 J k g^{-1} K^{-1}$ respectively, and the specific latent heat of fusion of ice is $c = 3.34 \cdot 10^5 J k g^{-1}$.
- 8. Determine the volume of a pressure vessel filled by 100g of oxygen at 200kPa of pressure and temperature of $25\,^{\circ}C$. Consider that the molecular mass of oxygen is $32\,g\,mol^{-1}$.
- 9. Determine the number of moles and the number of atoms in $1 cm^3$ of ideal gas at 100 Pa of pressure and temperature of 220 K.
- 10. Determine the specific heat capacity at constant volume c_V and the specific heat capacity at constant pressure c_p for pure gaseous hydrogen.
- 11. What is the root-mean-square speed of 10^{22} nitrogen molecules at 300 K? The molecular mass of nitrogen is $28 g \, mol^{-1}$. What is the corresponding average translational kinetic energy of molecules?
- 12. What is the internal energy of 5kg of gaseous oxygen at $25\,^{\circ}C$? How does the internal energy change after the gas is warmed to $100\,^{\circ}C$ at constant volume? Consider that the molecular mass of oxygen is $32\,g\,mol^{-1}$.