

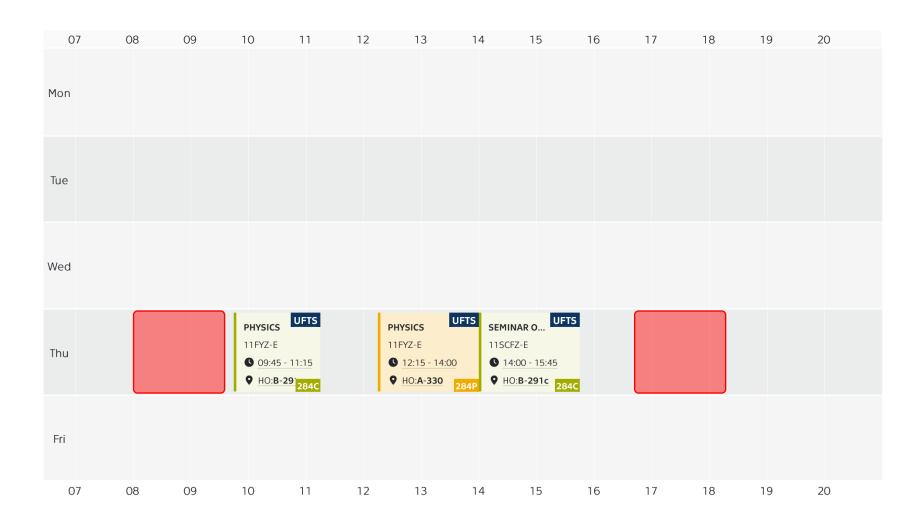
### Physics education at FTS CTU

Tomas Vitu tomas.vitu@fel.cvut.cz

Antonio Cammarata cammaant@fel.cvut.cz

Dept. of Applied Mathematics K611 – Florenc

Subject website – https://zolotarev.fd.cvut.cz/fyze


Two terms (semester) of education (11FYZ-E and 11EMO-E)

Lecture

Practical exercises (labs) – compulsory

Seminary exercise (11SCF-E) - voluntary but recommended

#### Official timetable



### Assessment conditions (by 15th February 2026)

compulsory practical education (fully passed)

successful delivery of all measurement reports (A - E)

### **Exam conditions**

final test of Seminary 11SCFZ-E at the end of the term

4 problems – classification 0 – 2 points =  $\mathbf{0}$  –  $\mathbf{8}$  points total topics of the problems – see the website if 5/8 points are reached = oral exam only

### **Exams**

written part (if the test exam was not successful)

4 problems – classification 0 – 2 points =  $\mathbf{0}$  –  $\mathbf{8}$  points total if 5/8 points are reached = oral exam

oral part – 2 topics from the list of topics (available on the website)

### **Supporting study literature**

#### Lectures:

Halliday, D., Resnick, R., Walker, J.: Fundamentals of Physics (HRW) pdf version at http://libgen.rs/search.php

### **Laboratory exercises:**

subject website

### **Seminary exercises:**

subject website

# **Pre-requisites of Physics**

### High school / grammar school physics level knowledge

physical quantities, units and basic laws calculations without integration

#### **Definition of vectors and scalars**

direction of vector components and magnitude of vector addition and subtraction dot product and cross product

# Basic knowledge of differential and integral calculus one variable

### Multivariable differential and integral calculus

Stokes law, Green law, Gauss-Ostrogradsky law

# Simplification and Abstraction

### **Abstraction of knowledge**

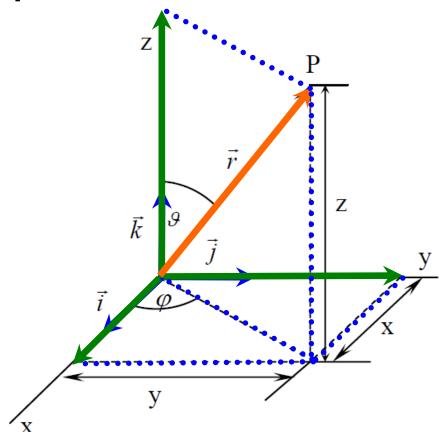
- separation of numbers and real objects
- substitution of numbers by symbols
- separation of properties and math objects
  - = linear vector field

### UNIVERSITY EDUCATION

### **Problem simplification** – based on the error extent

- description of the problem using measurable variables
- mathematical description and solution
- matching rate to the practical observation
- next iteration (if needed)



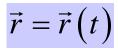

# Mass point kinematics

### **Mass point position**

**Cartesian coordinates** 

x, y, z

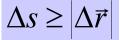
**Spherical coordinates** r,  $\theta$ ,  $\varphi$  (polar angle, azimuth)

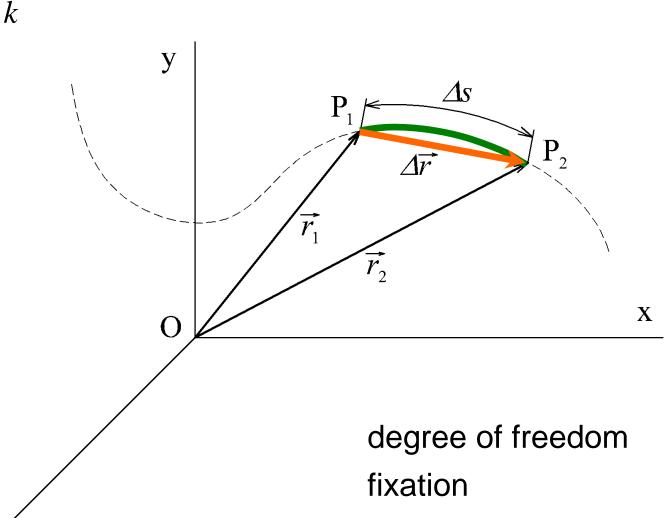



$$\vec{r} = x\,\vec{i} + y\,\vec{j} + z\,\vec{k}$$

$$r = |\vec{r}| = \sqrt{x^2 + y^2 + z^2}$$

## Displacement of the mass point


$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$




$$x = x(t)$$

$$y = y(t)$$

$$z = z(t)$$





#### HRW-Ch02

X

## average velocity

$$\overline{\vec{v}} = \frac{\Delta \vec{r}}{\Delta t}$$

### (instantaneous) velocity

Z

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$$

# $\vec{v} = v_x \vec{i} + v_y \vec{j} + v_z \vec{k}$

$$v_{x} = \frac{dx}{dt}$$

$$v_{y} = \frac{dy}{dt}$$

# (instantaneous) speed

$$v = |\vec{v}| = \sqrt{v_x^2 + v_y^2 + v_z^2}$$

$$v_z = \frac{dz}{dt}$$

### mean acceleration

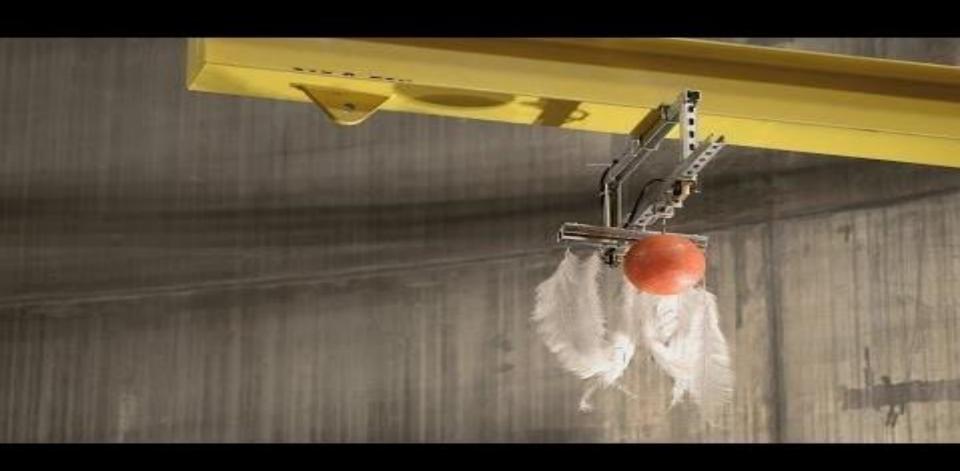
$$\overline{\vec{a}} = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v}_2 - \vec{v}_1}{\Delta t}$$

### (instantaneous) acceleration

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$$

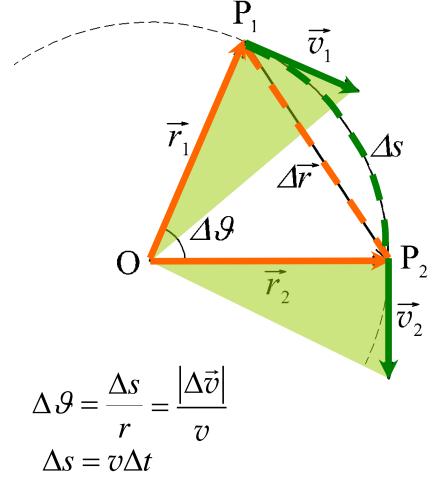
$$a = |\vec{a}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

$$a_{x} = \frac{dv_{x}}{dt} = \frac{d^{2}x}{dt^{2}}$$

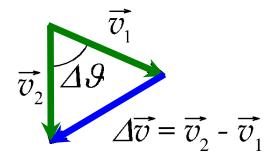

$$a_{y} = \frac{dv_{y}}{dt} = \frac{d^{2}y}{dt^{2}}$$

$$a_{z} = \frac{dv_{z}}{dt} = \frac{d^{2}z}{dt^{2}}$$

# **Types of Motion**


• straight-line, curved

• uniform, non-uniform




### **Uniform circular motion**

constant speed + trajectory with constant curvature



$$|\overrightarrow{r_1}| = |\overrightarrow{r_2}| = r$$
  
 $|\overrightarrow{v_1}| = |\overrightarrow{v_2}| = v$ 



$$\frac{v\Delta t}{r} = \frac{\left|\Delta\vec{v}\right|}{v}$$

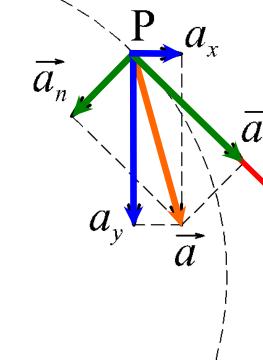
$$\frac{\left|\Delta\vec{v}\right|}{\Delta t} = \frac{v^2}{r} = a_n$$

centripetal acceleration

### Non-uniform circular motion

$$\vec{a} = \frac{d\vec{v}}{dt} = \vec{a}_t + \vec{a}_n$$

$$a_{t} = \left| \vec{a}_{t} \right| = \frac{dv}{dt}$$


$$a_n = \left| \vec{a}_n \right| = \frac{v^2}{r}$$

$$a_{t} = |\vec{a}_{t}| = \frac{dv}{dt}$$

$$a = \sqrt{a_{t}^{2} + a_{n}^{2}}$$

$$a_{n} = |\vec{a}_{n}| = \frac{v^{2}}{r}$$

$$a = \sqrt{a_{x}^{2} + a_{y}^{2}}$$

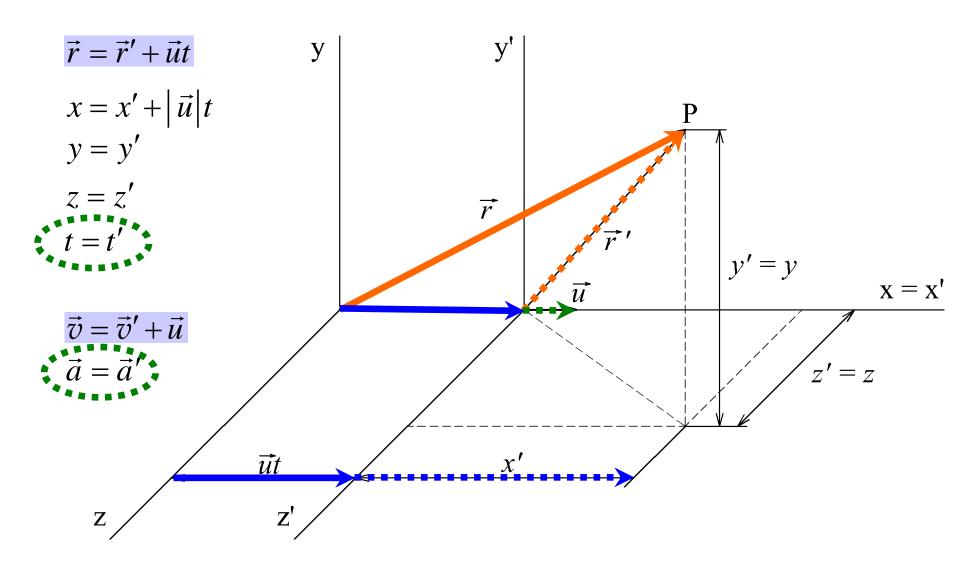


angular velocity  $\vec{\omega}$ 

$$\omega = \frac{d\varphi}{dt}$$

$$\omega = \frac{d\varphi}{dt} \qquad \omega = \frac{d}{dt} \left( \frac{s}{r} \right) = \frac{1}{r} \frac{ds}{dt} = \frac{v}{r}$$

 $\vec{v} = \vec{\omega} \times \vec{r}$ 


angular acceleration  $\vec{\varepsilon}$ 

$$\varepsilon = \frac{d\omega}{dt} = \frac{d^2\varphi}{dt^2}$$

$$\omega = 2\pi f$$

$$f = \frac{1}{T}$$

## Galileo's theory of motion



inertial reference frame - the acceleration is the same

### **Lorentz factor**

### STR postulate:

the speed of light is the same in all inertial reference frames

$$x = \gamma(x' + |\vec{u}|t)$$

$$y = y'$$

$$z = z'$$

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

$$\beta = \frac{u}{c}$$

Lorentz factor

speed ratio

$$m = m'\sqrt{1 - \frac{u^2}{c^2}}$$

$$x = \frac{x' + ut'}{\sqrt{1 - \frac{u^2}{c^2}}}$$

$$y = y'$$

$$z = z'$$

$$t' + \frac{ux'}{c^2}$$

$$\sqrt{1 - \frac{u^2}{c^2}}$$

$$v = \frac{v' + u}{1 + \frac{v'u}{c^2}}$$

$$t = \frac{t' + \frac{ux'}{c^2}}{\sqrt{1 - \frac{u^2}{c^2}}}$$

$$v = \frac{v' + u}{1 + \frac{v'u}{c^2}}$$

GPS – time correction for the GPS satellites (precision of position)