UNIFIED
MODELING
LANGUAGE

Wi

UML Notation Guide

version 1.1
1 September 1997

Rational Softwara Microsofts Hewlett-Packara Oracle
Sterling Softwara MCI Systemhouse Unisyss ICON Computing
IntelliCorpm i-Logix = IBM = ObjecTimes Platinum Technology Ptech

Taskons Reich Technologies Softeam

ad/97-08-05

Copyright © 1997 Rational Software Corporation
Copyright © 1997 Microsoft Corporation
Copyright © 1997 Hewlett-Packard Company.
Copyright © 1997 Oracle Corporation.

Copyright © 1997 Sterling Software.

Copyright © 1997 MCI Systemhouse Corporation.
Copyright © 1997 Unisys Corporation.

Copyright © 1997 ICON Computing.

Copyright © 1997 IntelliCorp.

Copyright © 1997 i-Logix.

Copyright © 1997 IBM Corporation.

Copyright © 1997 ObjecTime Limited.

Copyright © 1997 Platinum Technology Inc.
Copyright © 1997 Ptech Inc.

Copyright © 1997 Taskon A/S.

Copyright © 1997 Reich Technologies

Copyright © 1997 Softeam

Photocopying, electronic distribution, or foreign-language translation of this document is permitted,
provided this document is reproduced in its entirety and accompanied with this entire notice, including the
following statement:

The most recent updates on the Unified Modeling Language are available via the worldwide web:
http://www.rational.com/uml

The UML logo is a trademark of Rational Software Corporation.

Contents

1. DoCUMENT OVERVIEW
2. DIAGRAM ELEMENTS

2.1 Graphsandtheir Contents i 3....
2.2 Drawing paths 4
2.3 Invisible Hyperlinks And The Role Of TooIs i e 4
2.4 Background information 4...
2D SHING . e 5
2.6 NaMe . . 6
2.7 Label . e 7
2.8 KEYWOIAS. . .ttt e e e 8
2.9 EXPIESSION . .ttt e i meaaaa 8
2.0 NOTE . .o 10
2.11 Type-Instance Correspondencettt e
3. MODEL MANAGEMENT 13
3.1 Packages and Model Organization,
4. GENERAL EXTENSION MECHANISMS 16
4.1 Constraintand COMMENt.t e 16.....
4.2 Element Properties. e, 18..
4.3 S EIEOIYPES. . . it e e e 20
5. SrATIC STRUCTURE DIAGRAMS 22
5.1 Classdiagram. e 22
5.2 Objectdiagram.t e 23
5.3 Classifer. . .o e 23
B4 ClaSS. . . e e 23
5,5 Name Compartment. 25. ...
5.6 ListCompartment e 26 .
B.7 AHNDULE. . .. e e e 29
B8 OPEratiON . . .o e e e e 32
5.9 Typevs.Implementation Classt 5.....
5.10 Interfaces e 36
5.11 Parameterized Class (Template) i 8.....
5.12 Bound Element 40
B.A3 ULty . . o e 42
5.14 MetacClasso vt e 43
5.15 Class Pathnamest e e 43.
5.16 Importing a package A4. .
D17 ObJECt. . .o e ——— 46
5.18 Composite ObjeCt. e 48
5.19 ASSOCIAION . .ottt it 50
5.20 Binary ASSOCIatioN.t 50

UML v 1.1, Notation Guide iii

Contents

5.21 AssocCiation ENd.ot e e aaaa 52
5.22 MURIPliCity 56
B.23 Qualifier. e i 58
5.24 AssOCiation Class.o ot 59,
5.25 N-ary assoCiation e 6l
5.26 COomMpPOSItION. 62
B 27 LINKS .ot 65
5.28 Generalization a7
B5.29 DEPENAENCY . .. i it e e e A
5.30 Derived Element 73
6. Uske CASE DIAGRAMS 75
6.1 UseCase Diagramt e e e e e 75. ..
8.2 USE CaSE ..ottt 77
B.3 ACIOr . o e e e 77
6.4 Usecaserelationships 78. .
7. SEQUENCE DIAGRAMS 80
7.1 Kinds of Interaction Diagrams. i e 80....
7.2 Sequence diagram e e 80..
7.3 Objectlifeline e 83
T4 ACHIVAtiON e e 84
7.5 MEBSSAQE . . o ittt e 85
7.6 Transition TiMeSttt e e e e e e e e e e e 87
8. COLLABORATION DIAGRAMS 88
8.1 Collaboration 88
8.2 Collaboration diagram 89 ..
8.3 Pattern StruCtUre i e 90.
8.4 Collaboration ConteNntsottt e 92 ..
8.5 INtBraCtioNSot e 93
8.6 Collaboration RoOIES i 94 .
8.7 MuUltiobject. e 95
8.8 Active object 96
8.9 Message flows e 98
8.10 Creation/destruction markers. i 102. ...
9. STATECHART DIAGRAMS 103
9.1 StatechartDiagram e 103..
0.2 SHAlES . . . e e 104
9.3 COMPOSItE StAlES oo it e 106. .
0.4 EVENIS .. 108
9.5 Simpletransitions e aaa 111
9.6 ComplexX transitions. i e e 113.
9.7 Transitionstonested States o 114. ..
9.8 SENAINg MESSAQES . . v vttt 116..
9.9 Internal tranSitioNSot 120
iv UML v 1.1, Notation Guide

10. AcTiviTY DIAGRAM

10.1 Activitydiagram e
10.2 Actionstate it
10.3 DECISIONS . . ottt
10.4 Swimlanes

10.5 Action-Object Flow Relationships

11. IMPLEMENTATION DIAGRAMS

11.1 Componentdiagrams.c.couviininnnnnnnenn..
11.2 Deploymentdiagrams i
11.3 NOUES. . oot
11.4 COmMPONENtS. .. .ottt

11.5 Location of Components and objects within objects
INDEX

UML v 1.1, Notation Guide

Contents

10.6 Control ICONSo

Contents

Vi

UML v 1.1, Notation Guide

Document Overview

1. DOCUMENT OVERVIEW

This document describes the notation for the visual representation of the Unified Modeling Lan-
guage (UML). This document should be used in conjunction with the compaMbrSemantics
document. This notation document contains brief summaries of the semantics of UML constructs,
but the semantics document must be consulted for full details.

This document is arranged into chapters according to semantic concepts subdivided by diagram
types. Within each diagram type are listed model elements that are found on that diagram and their
representation. Note, however, that many model elements are usable in more than one diagram. An
attempt has been made to place each description where it is used the most, but be aware that the
document involves implicit cross-references and that elements may be useful in other places than
the chapter in which they are described. Be aware also that the document is nonlinear: there are for-
ward references in it. It is not intended to be a teaching document that can be read linearly but a
reference document organized by affinity of concept.

Each chapter is divided into numbered sections, roughly corresponding to important model ele-
ments and notational constructs. Note that some of these constructs are used within other constructs;
do not be misled by the flattened structure of the chapter. Within each section the following subsec-
tions may be found:

Semantics: Brief summary of semantics. For a fuller explanation and discussion of fine
points see th&fML Semanticslocument.

Notation: Explains the notational representation of the semantic concept (“forward map-
ping to notation”).

Presentation options: Describes various options in presenting the model information, such
as the ability to suppress or filter information, alternate ways of showing things, and sug-
gestions for alternate ways of presenting information within a tool. Dynamic tools need the
freedom to present information in various ways and we do not want to restrict this exces-
sively. In some sense, we are defining the “canonical notation” that printed documents
show, rather than the “screen notation”. We realize that the ability to extend the notation
can lead to unintelligible dialects so we hope that this freedom will be used in intuitive
ways. We have not sought to eliminate all the ambiguity that some of these presentation
options may introduce, because the presence of the underlying model in a dynamic tool
serves to easily disambiguate things. Note that a tool is not supposed to pick just one of the
presentation options and implement it; tools should offer users the options of selecting
among various presentation options, including some that are not described in this docu-
ment.

Style guidelines: Suggestions for the use of stylistic markers, such as fonts, naming con-
ventions, arrangement of symbols, etc., that are not explicitly part of the notation but that
help to make diagrams more readable. These are similar to text indentation rules in C++ or
Smalltalk. Not everyone will choose to follow these suggestions, but the use of some con-
sistent guidelines of your own choosing is recommended in any case.

UML v 1.1, Notation Guide 1

Document Overview

Example: Shows samples of the notation. String and code examples are given in the fol-
lowing font: This is a string sample.

Mapping: Shows the mapping of notation elements to metamodel elements (“reverse map-
ping from notation”). This indicates how the notation would be represented as semantic
information. Note that, in general, diagrams are interpreted in a particular context in which
semantic and graphic information is gathered simultaneously. The assumption is that dia-
grams are constructed by an editing tool that internalizes the model as the diagram is con-
structed. Some semantic constructs have no graphic notation and would be shown to a user
within a tool using a form or table.

2 UML v1.1, Notation Guide

Diagram Elements

2. DIAGRAM ELEMENTS

This chapter discusses mechanisms of the notation. These are generic mechanisms that are used in
various ways in subsequent chapters to represent semantics.

2.1 GRAPHS AND THEIR CONTENTS

Most UML diagrams and some complex symbols are graphs containing nodes connected by paths.
The information is mostly in the topology, not in the size or placement of the symbols (there are
some exceptions, such as a sequence diagram with a metric time axis). There are three kinds of
visual relationships that are important: connection (usually of lines to 2-d shapes), containment (of
symbols by 2-d shapes with boundaries), and visual attachment (one symbol being “near” another
one on a diagram). These visual relationships map into connections of nodes in a graph, the parsed
form of the notation.

UML notation is intended to be drawn on 2-dimensional surfaces. Some shapes are 2-dimensional
projections of 3-d shapes (such as cubes) but they are still rendered as icons on a 2-dimensional sur-
face. In the near future true 3-dimensional layout and navigation may be possible on desktop
machines but it is not currently practical.

There are basically four kinds of graphical constructs that are used in UML notation: icons, 2-d
symbols, paths, and strings.

An icon is a graphical figure of a fixed size and shape; it does not expand to hold contents. Icons
may appear within area symbols, as terminators on paths, or as stand-alone symbols that may or
may not be connected to paths.

Two-dimensional symbols have variable height and width and they can expand to hold other things,
such as lists of strings or other symbols. Many of them are divided into compartments of similar or
different kinds. Paths are connected to two-dimensional symbols by terminating the path on the
boundary of the symbol. Dragging or deleting a 2-d symbol affects its contents and any paths con-
nected to it.

Paths are sequences of line segments whose endpoints are attached. Conceptually a path is a single
topological entity, although its segments may be manipulated graphically. A segment may not exist
apart from its path. Paths are always attached to other graphic symbols at both ends (no dangling
lines). Paths may haverminators,that is, icons that appear in some sequence on the end of the
path and that qualify the meaning of the path symbol.

Strings present various kinds of information in an “unparsed” form. UML assumes that each usage
of a string in the notation has a syntax by which it can be parsed into underlying model information.
For example, syntaxes are given for attributes, operations, and transitions. These syntaxes are sub-
ject to extension by tools as a presentation option. Strings may exist as singular elements of symbols
or compartments of symbols, as elements in lists (in which case the position in the list conveys
information), as labels attached to symbols or paths, or as stand-alone elements on a diagram.

UML v 1.1, Notation Guide 3

Diagram Elements

2.2 DRAWING PATHS

A path consists of a series of line segments whose endpoints coincide. The entire path is a single
topological unit. Line segments may be orthogonal lines, oblique lines, or curved lines. Certain
common styles of drawing lines exist: all orthogonal lines, or all straight lines, or curves only for
bevels. The line style can be regarded as a tool restriction on default line input. When line segments
cross, it may be difficult to know which visual piece goes with which other piece; therefore a
crossing may optionally be shown with a small semicircular jog by one of the segments to indicate
that the paths do not intersect or connect (as in an electrical circuit diagram).

In some relationships (such as aggregation and generalization) several paths of the same kind may
connect to a single symbol. In some circumstances (described for the particular relationship) the line
segments connected to the symbol can be combined into a single line segment, so that the path from
that symbol branches into several paths in a kind of tree. This is purely a graphical presentation
option; conceptually the individual paths are distinct. This presentation option may not be used
when the modeling information on the segments to be combined is not identical.

2.3 INVISIBLE HYPERLINKS AND THE ROLE OF TooOLS

A notation on a piece of paper contains no hidden information. A notation on a computer screen,
however, may contain additional invisible hyperlinks that are not apparent in a static view, but that
can be invoked dynamically to access some other piece of information, either in a graphical view
or in a textual table. Such dynamic links are as much a partyfiamicnotation as the visible
information, but this document does not prescribe their form. We regard them as a tool responsi-
bility. This document attempts to definstatic notation for the UML, with the understanding that
some useful and interesting information may show up poorly or not at all in such a view. On the
other hand, we do not know enough to specify the behavior of all dynamic tools, nor do we want to
stifle innovation in new forms of dynamic presentation. Eventually some of the dynamic notations
may become well enough established to standardize them, but we do not feel that we should do so
now.

2.4 BACKGROUND INFORMATION

2.4.1 Presentation options

Each appearance of a symbol for a class on a diagram or on different diagrams may have its own
presentation choices. For example, one symbol for a class may show the attributes and operations
and another symbol for the same class may suppress them. Tools may provide style sheets attached
either to individual symbols or to entire diagrams. The style sheets would specify the presentation
choices. (Style sheets would be applicable to most kinds of symbols, not just classes.)

Not all modeling information is most usefully presented in a graphical notation. Some information
is best presented in a textual or tabular format. For example, much detailed programming informa-

4 UML v1.1, Notation Guide

Diagram Elements

tion is best presented as text lists. The UML does not assume that all of the information in a model
will be expressed as diagrams; some of it may only be available as tables. This document does not
attempt to prescribe the format of such tables or of the forms that are used to access them, because
the underlying information is adequately described in the UML metamodel and the responsibility
for presenting tabular information is a tool responsibility. It is assumed, however, that hidden links
may exist from graphical items to tabular items.

2.5 STRING

A string is a sequence of characters in some suitable character set used to display information about
the model. Character sets may include non-Roman alphabets and characters.

2.5.1 Semantics

Diagram strings normally map underlying model strings that store or encode information about the
model, although some strings may exist purely on the diagrams. UML assumes that the underlying
character set is sufficient for representing multibyte characters in various human languages; in par-
ticular, the traditional 8-bit ASCII character set is insufficient. It is assumed that the tool and the
computer manipulate and store strings correctly, including escape conventions for special charac-
ters, and this document will assume that arbitrary strings can be used without further fuss.

2.5.2 Notation

A string is displayed as a text string graphic. Normal printable characters should be displayed
directly. The display of nonprintable characters is unspecified and platform-dependent. Depending
on purpose, a string might be shown as a single-line entity or as a paragraph with automatic line
breaks.

Typeface and font size are graphic markers that are normally independent of the string itself. They

may code for various model properties, some of which are suggested in this document and some of
which are left open for the tool or the user.

2.5.3 Presentation options

Tools may present long strings in various ways, such as truncation to a fixed size, automatic wrap-
ping, or insertion of scroll bars. Itis assumed that there is a way to obtain the full string dynamically.

2.5.4 Example

BankAccount

integrate (f: Function, from: Real, to: Real)

UML v 1.1, Notation Guide 5

Diagram Elements

{ author = “Joe Smith”, deadline = 31-March-1997, status = analysis }

The purpose of the shuffle operation is nominally to put the cards into a random
configuration. However, to more closely capture the behavior of physical decks, in which
blocks of cards may stick together during several riffles, the operation is actually simulated
by cutting the deck and merging the cards with an imperfect merge.

2.5.5 Mapping

A graphic string maps into a string within a model element. The mapping depends on context. In
some circumstances, the visual string is parsed into multiple model elements. For example, an oper-
ation signature is parsed into its various fields. Further details are given with each kind of symbol.

2.6 NAME

2.6.1 Semantics

A name is a string that is used to uniquely identify a model element within some scope. A pathname
is used to find a model element starting from the root of the system (or from some other point). A

name is a selector (qualifier) within some scope—the scope is made clear in this document for each
element that can be named.

A pathname is a series of names linked together by a delimiter (such as ‘::"). There are various kinds
of pathnames described in this document, each in its proper place and with its particular delimiter.

2.6.2 Notation

A name is displayed as a text string graphic. Normally a name is displayed on a single line and will
not contain nonprintable characters. Tools and languages may impose reasonable limits on the

length of strings and the character set they use for names, possibly more restrictive than those for
arbitrary strings such as comments.

2.6.3 Example

Names:
BankAccount
integrate
controller

abstract

UML v1.1, Notation Guide

Diagram Elements

this_is_a_very _long_name_with_underscores
Pathname:

MathPak::Matrices::BandedMatrix.dimension

2.6.4 Mapping

Maps to the name of a model element. The mapping depends on context, as with String. Further
details are given with the particular element.

2.7 LABEL

A label is a string that is attached to a graphic symbol.

2.7.1 Semantics

A label is a term for a particular use of a string on a diagram. It is purely a notational term.

2.7.2 Notation

A label is a string that is graphically attached to another symbol on a diagram. Visually the attach-
ment is normally by containment of the string (in a closed region) or by placing the string near the
symbol. Sometimes the string is placed in a definite position (such as below a symbol) but most of
the time the statement is that the string must be “near” the symbol. A tool maintains an explicit
internal graphic linking between a label and a graphic symbol, so that the label drags with the
symbol, but the final appearance of the diagram is a matter of aesthetic judgment and should be
made so that there is no confusion about which symbol a label is attached to. Although the attach-
ment may not be obvious from a visual inspection of a diagram, the attachment is clear and unam-
biguous at the graphic level (and therefore poses no ambiguity in the semantic mapping).

2.7.3 Presentation options

A tool may visually show the attachment of a label to another symbol using various aids (such as a
line in a given color, flashing of matched elements, etc.) as a convenience.

UML v 1.1, Notation Guide 7

Diagram Elements

2.7.4 Example

Figure 1. Attachment by containment and attachment by adjacency

BankAccount

account

2.8 KEYWORDS

The number of easily-distinguishable visual symbols is limited. The UML notation therefore makes

use of text keywords in places to distinguish variations on a common theme, including metamodel
subclasses of a base class, stereotypes of a metamodel base class, and groups of list elements. From
the user’s perspective, the metamodel distinction between metamodel subclasses and stereotypes is
often unimportant, although it is of course important to tool builders and others who implement the
metamodel.

The general notation for the use of a keyword is to enclose it in guillemets («»):
«keyworc

Certain predefined keywords are described in the text of this document. These must be treated as
reserved words in the notation. Others are available for users to employ as stereotype names. The
use of a stereotype name that matches a predefined keyword is ill-formed.

2.9 EXPRESSION

2.9.1 Semantics

Various UML constructs requirexpressionswhich are linguistic formulas that yield values when
evaluated at run-time. These include expressions for types, boolean values, and numbers. UML
does not include an explicit linguistic analyzer for expressions. Rather, expressions are expressed
as strings in a particul¥anguage The OCL constraint language is used within the UML semantic
definition and may also be used at the user level; other languages (such as programming languages)
may also be used.

8 UML v1.1, Notation Guide

Diagram Elements

UML avoids specifying the syntax for constructing type expressions because they are so language-
dependent. It is assumed that the name of a class or simple data type will map into @lassple

fier reference, but the syntax of complicated language-dependent type expressions, such as C++
function pointers, is the responsibility of the specification language.

2.9.2 Notation

An expression is displayed as a string defined in a particular language; the syntax of the string is the
responsibility of a tool and a linguistic analyzer for the language. The assumption is that the ana-
lyzer can evaluate strings at run-time to yield values of the appropriate type, or can yield semantic
structures to capture the meaning of the expression. For example, a type expression evaluates to a
Classifier reference, and a boolean expression evaluates to a true or false value. The language itself
is known to a modeling tool but is generally implicit on the diagram, under the assumption that the
form of the expression makes its purpose clear.

2.9.3 Example

BankAccount
BankAccount * (*) (Person*, int)
array [1..20] of reference to range (-1.0..1.0) of Real

[i>]and self.size > i]
2.9.4 Mapping

An expression string maps to an Expression element (possibly a particular subclass of Expression,
such as ObjectSetExpression or TimeExpression).

2.9.5 OCL Expressions

UML includes a definition of the OCL language, which is used to define constraints within the
UML metamodel itself. The OCL language may be supported by tools for user-written expressions
as well. Other possible languages include various computer languages as well as plain text (which
cannot be parsed by a tool, of course, and is therefore only for human information).

2.9.6 Selected OCL Notation

Syntax for some common navigational expressions are shown below. These forms can be chained
together. The leftmost element must be an expression for an object or a set of objects. The expres-
sions are meant to work on sets of values when applicable. For more details and syntax see the OCL
description.

UML v 1.1, Notation Guide 9

Diagram Elements

item*.’ selector the selectoris the name of an attribute in the item or the name of a role of
the target end of a link attached to the item. The result is the value of the
attribute or the related object(s). The result is a value or a set of values
depending on the multiplicities of the item and the association.

item*.’ selector[* qualifier-value)’
the selectordesignates a qualified association that qualifiestéme. The
qualifier-valueis a value for the qualifier attribute. The result is the related

object selected by the qualifier. Note that this syntax is applicable to array
indexing as a form of qualification.

set'—>' ‘select’ ‘(* boolean-expressiofy
the boolean-expressiois written in terms of objects within the set. The
result is the subset of objects in the set for which the boolean expression is
true.

2.9.7 Example

flight.pilot.training_hours > flight.plane.minimum_hours

company.employeesselect (title = “Manager” and self.repottssize > 10)
2.10 NOTE

A note is a graphical symbol containing textual information (possibly including embedded images).
It is a notation for rendering various kinds of textual information from the metamodel, such as con-
straints, comments, method bodies, and tagged values.

2.10.1 Semantics
A note is a notational item. It show textual information within some semantic element.

2.10.2 Notation

A note is shown as a rectangle with a “bent corner” in the upper right corner. It contains arbitrary
text. It appears on a particular diagrams and may be attached to zero or more modeling elements by
dashed lines.

2.10.3 Presentation options

A note may have a stereotype.

10 UML v1.1, Notation Guide

Diagram Elements

A note with the stereotype “constraint” or a more specific form of constraint (such as the code body
for a method) designates a constraint that is part of the model and not just part of a diagram view.
Such a note is the view of a model element (the constraint). Other kinds of notes are purely notation;
they have no underlying model element.

2.10.4 Example

See also Section 4.1.3 for a note symbol containing a constraint.

Figure 2. Note

This model was built
by Alan Wright after

meeting with the
mission planning team.

2.10.5 Mapping

A note may represent the textual information in several possible metamodel constructs; it must be
created in context that is known to a tool, and the tool must maintain the mapping. The string in the
note maps to the body of the corresponding modeling element. A note may represent: a constraint;
a tagged value; the body of a method; or other string values within modeling elements. It may also
represent a comment attached directly to a diagram element.

2.11 TYPE-INSTANCE CORRESPONDENCE

A major purpose of modeling is to prepare generic descriptions that describe many specific partic-
ular items. This is often known as ttype-instance dichotomiany or most of the modeling con-

cepts in UML have this dual character, usually modeled by two paired modeling elements, one of
which represents the generic descriptor and the other of which the individual items that it describes.
Examples of such pairs in UML include: Class-Object, Association-Link, Parameter-Value, Oper-
ation-Call, and so on.

Although diagrams for type-like elements and instance-like elements are not exactly the same, they
share many similarities. Therefore it is convenient to choose notation for each type-instance pair of
elements such that the correspondence is immediately visually apparent. There are a limited number
of ways to do this, each with advantages and disadvantages. In UML the type-instance distinction
is shown by employing the same geometrical symbol for each pair of elements and by underlining
the name string (including type name, if present) of an instance element. This visual distinction is
generally easily apparent without being overpowering even when an entire diagram contains
instance elements.

UML v 1.1, Notation Guide 11

Diagram Elements

Figure 3. Classes and objects

pl: Paint
Point x =3.14
x: Real y=2.718
y: Real
rotate (angle: Real)
scale (factor: Real)
Point
x=1
y=1.414

A tool is free to substitute a different graphic marker for instance elements at the user’s option, such
as color, fill patterns, or so on.

12 UML v1.1, Notation Guide

Model Management

3. MODEL MANAGEMENT

3.1 PACKAGES AND MODEL ORGANIZATION

3.1.1 Semantics

A packagés a grouping of model elements. Packages themselves may be nested within other pack-
ages. A package may contain both subordinate packages and ordinary model elements. Some pack-
ages may be Subsystems or Models. The entire system description can be thought of as a single
high-level subsystem package with everything else in it. All kinds of UML model elements and dia-
grams can be organized into packages.

Note that packageswn model elements and model fragments and are the basis for configuration
control, storage, and access control. Each element can be directly owned by a single package, so the
package hierarchy is a strict tree. However, packages can reference other packages, so the usage net-
work is a graph.

There are several predefined stereotypes of Model and Subsystem. See the metamodel document
for details. In particular, the stereotype «system» of Subsystem denotes the entire set of models for
the complete system being modeled; it is the root of the package hierarchy and the only model ele-
ment that is not owned by some other model element.

3.1.2 Notation

A package is shown as a large rectangle with a small rectangle (a “tab”) attached on one corner (usu-
ally the left side of the upper side of the large rectangle). It is a manila folder shape.

If contents of the package are not shown, then the name of the package is placed within the large
rectangle.

If contents of the package are shown, then the name of the package may be placed within the tab.

A keyword string may be placed above the package name. The kepubeysterandmodelindi-

cate that the package is a metamodel Subsystem or Model. The predefined stesystgpes
facade, frameworkandtop packagere also notated with keywords. User-defined stereotypes of
one of these predefined kinds of package are also notated with keywords, but they must not conflict
with the predefined keywords.

A list of properties as may be placed in braces after or below the package name. Example:
{abstract}. See Section 4.2.2 for details of property syntax.

The contents of the package may be shown within the large rectangle.

The visibility of a package element outside the package may be indicated by preceding the name of
the element by a visibility symbol (‘+’ for public, ‘-’ for private, ‘#' for protected). If the element

UML v 1.1, Notation Guide 13

Model Management

is an inner package, the visibilities of its elements as exported by the outer package are obtained by
combining the visibilities of an element within the package with the visibility of the package itself:
the most restrictive visibility results.

Relationships may be drawn between package symbols to show relationships between at least some
of the elements in the packages. In particular, dependency between packages implies that there exist
one or more dependencies among the elements.

3.1.3 Presentation options

A tool may also show visibility by selectively displaying those elements that meet a given visibility
level, e.qg., all of the public elements only.

A tool may show visibility by a graphic marker, such as color or font.
3.1.4 Style guidelines

It is expected that packages with large contents will be shown as simple icons with names, in which
the contents may be dynamically accessed by “zooming” to a detailed view.

14 UML v1.1, Notation Guide

Model Management

3.1.5 Example

Figure 4. Packages and their dependencies

«subsystem »
Editor
—
. Controller
: 1 v I
. ___| Diagram |
| | Elementls |
L L
1 1 | |
VvV vy —
Domain Graphics | _ _ _______|_____ = Windowing
Elements Core System
— fl — /
MotifCore Motif
1
Microsoft
WindowsCore [~ --~~--~------- =1 Windows
3.1.6 Mapping

A package symbol maps into a Package element. The name on the package symbol is the name of
the Package element. If the package has a keyword that is a predefined keyword, then the package
symbol maps into the corresponding subclass of Package or into the corresponding stereotype of
Package; otherwise it maps into a user-defined stereotype of Package.

A symbol directly contained within the package symbol (i.e., not contained within another symbol)
maps into a model element owned by the package element. However, a symbol whose name is a
pathname maps into a reference to a model element owned by another package; only the reference
is owned by the current package. Relationships from the package symbol boundary map into rela-
tionships to the package element.

UML v 1.1, Notation Guide 15

General Extension Mechanisms

4. GENERAL EXTENSION MECHANISMS

The elements in this chapter are general purpose mechanisms that may be applied to any modeling
element. The semantics of a particular use depends on a convention of the user or an interpretation
by a particular constraint language or programming language, therefore they constitute an extensi-
bility device for UML.

4.1 CONSTRAINT AND COMMENT

4.1.1 Semantics

A constraintis a semantic relationship among model elements that specifies conditions and propo-
sitions that must be maintained as true (otherwise the system described by the model is invalid, with
consequences that are outside the scope of UML). Certain kinds of constraints (such as an associa-
tion “or” constraint) are predefined in UML, others may be user-defined. A user-defined constraint

is described in words in a given language, whose syntax and interpretation is a tool responsibility.
A constraint represents semantic information attached to a model element, not just to a view of it.

A comments a text string (including references to human-readable documents) attached directly to
a model element. This is syntactically equivalent to a constraint written in the language “text”
whose meaning is significant to humans but which is not conceptually executable (except inasmuch
as humans are regarded as the instruments of interpretation). A comment can therefore attach arbi-
trary textual information to any model element of presumed general importance.

4.1.2 Notation

16

A constraint is shown as a text string in braces ({}). There is an expectation that individual tools
may provide one or more languages in which formal constraints may be written. One predefined
language for writing constraints is OCL (defined in a companion document). Otherwise the con-
straint may be written in natural language. A constraint may be a “comment”; it that case it is written
in text (possibly including pictures or other viewable documents) for “interpretation” by a human.
Each constraint is written in a specific language, although the language is not generally displayed
on the diagram (the tool must keep track of it).

For an element whose notation is a text string (such as an attribute, etc.): The constraint string may
follow the element text string in braces.

For a list of elements whose notation is a list of text strings (such as the attributes within a class):
A constraint string may appear as an elementin the list. The constraint applies to all succeeding ele-
ments of the list until another constraint string list element or the end of the list. A constraint
attached to an individual list element does not supersede the general constraint but may augment or
modify individual constraints within the constraint string.

UML v1.1, Notation Guide

General Extension Mechanisms

For a single graphical symbol (such as a class or an association path): The constraint string may be
placed near the symbol, preferably near the name of the symbol, if any.

For two graphical symbols (such as two classes or two associations): The constraint is shown as a
dashed arrow from one element to the other element labeled by the constraint string (in braces). The
direction of the arrow is relevant information within the constraint.

For three or more graphical symbols: The constraint string is placed in a note symbol and attached
to each of the symbols by a dashed line. This notation may also be used for the other cases. For three
or more paths of the same kind (such as generalization paths or association paths) the constraint may
be attached to a dashed line crossing all of the paths.

A comment is shown by a text string placed within a note symbol that is attached to a model ele-
ment. The braces are omitted to show that this is purely a textual comment. (The braces therefore
indicate a constraint expressed in some interpretable constraint language.)

4.1.3 Example
Figure 5. Constraints
1 Member-of
Person ' {subset} Committee Represents
! an incorporated entity.
1 Chairof 0O .
|
|
I
vorker employee employer '
I person |O | 0.1| company
0..1 |
| boss |
| 1
L — — — — — — — — — {Person.employer =
Person.boss.employer}
4.1.4 Mapping

The constraint string maps into thedyexpression in a Constraint element. The mapping depends
on the language of the expression, which is known to a tool but generally not displayed on a dia-

UML v 1.1, Notation Guide 17

General Extension Mechanisms

gram. If the string lacks braces (i.e., a Comment), then it maps into an expression in the language
“text”.

A constraint string following a list entry maps into a Constraint attached to the element corre-
sponding to the list entry.

A constraint string represented as a stand-alone list element maps into a separate Constraint
attached to each succeeding model element corresponding to subsequent list entries (until super-
seded by another constraint or property string).

A constraint string placed near a graphical symbol must be attached to the symbol by a hidden link
by a tool operating in context. The tool must maintain the graphical linkage implicitly. The con-
straint string maps into a Constraint attached to the element corresponding to the symbol.

A constraint string attached to a dashed arrow maps into a constraint attached to the two elements
corresponding to the symbols connected by the arrow.

A constraint string in a note symbol maps into a Constraint attached to the elements corresponding
to the symbols connected to the note symbol by dashed lines.

4.2 ELEMENT PROPERTIES

Many kinds of elements have detailed properties that do not have a visual notation. In addition,
users can define new element properties usintatiged valuenechanism.

A string may be used to display properties attached to a model element. This includes properties
represented by attributes in the metamodel as well as both predefined and user-defined tagged
values.

4.2.1 Semantics

18

Note that we useropertyin a general sense to mean any value attached to a model element,
including attributes, associations, and tagged values. In this sense it can include indirectly reachable
values that can be found starting at a given element.

A tagged valuds a keyword-value pair that may be attached to any kind of model element
(including diagram elements as well as semantic model elements). The keyword is tadled a

Each tag represents a particular kind of property applicable to one or many kinds of model elements.
Both the tag and the value are encoded as strings. Tagged values are an extensibility mechanism of
UML permitting arbitrary information to be attached to models. It is expected that most model edi-
tors will provide basic facilities for defining, displaying, and searching tagged values as strings but
will not otherwise use them to extend the UML semantics. It is expected, however, that back-end
tools such as code generators, report writers, and the like will read tagged values to alter their
semantics in flexible ways.

UML v1.1, Notation Guide

General Extension Mechanisms

4.2.2 Notation

A property (either a metamodel attribute or a tagged value) is displayed as a comma-delimited
sequence gbroperty specificationall inside a pair of braces ({}).

A property specificatiomas the form
keyword= value

wherekeywordis the name of a property (metamodel attribute or arbitrary tag)edineis an arbi-

trary string that denotes its value. If the type of the property is Boolean, then the default value is
true if the value is omitted. (That is, to specify a value of true you may include just the keyword;
to specify a value of false you omit the name completely.) Properties of other types require explicit
values. The syntax for displaying the value is a tool responsibility in cases where the underlying
model value is not a string or a number.

Note that property strings may be used to display built-in attributes as well as tagged values.
4.2.3 Presentation options

A tool may present property specifications on separate lines with or without the enclosing braces,
provided they are appropriately marked to distinguish them from other information. For example,
properties for a class might be listed under the class name in a distinctive typeface, such as italics
or a different font family.

4.2.4 Style guidelines

It is legal to use strings to specify properties that have graphical notations but such usage may be
confusing and should be used with care.

4.2.5 Example

{ author = “Joe Smith”, deadline = 31-March-1997, status = analysis }

{ abstract }
4.2.6 Mapping

Each term within a string maps to either a built-in attribute of a model element or a tagged value
(predefined or user-defined). A tool must enforce the correspondence to built-in attributes.

UML v 1.1, Notation Guide 19

General Extension Mechanisms

4.3 STEREOTYPES

4.3.1 Semantics

A stereotype is, in effect, a new class of modeling element that is introduced at modeling time. It
represents a subclass of an existing modeling element with the same form (attributes and relation-
ships) but with a different intent. Generally a stereotype represents a usage distinction. A stereo-
typed element may have additional constraints on it from the base class. Itis expected that code gen-
erators and other tools will treat stereotyped elements specially. Stereotypes represent one of the
built-in extensibility mechanisms of UML.

4.3.2 Notation

20

The general presentation of a stereotype is to use the symbol for the base element but to place a key-
word string above the name of the element (if any); the keyword string is the name of the stereotype
within matchedyuillemetswhich are the quotation mark symbols used in French and certain other
languages, as for example: «foo». (Note that a guillemet looks like a double angle-bracket but it is
a single character in most extended fonts. Most computers have a Character Map utility. Double
angle-brackets may be used as a substitute by the typographically challenged.) The keyword string
is generally placed above or in front of the name of the model element being described. The key-
word string may also be used as an element in a list, in which case it applies to subsequent list ele-
ments until another stereotype string replaces it, or an empty stereotype string («») nullifies it. Note
that a stereotype name should not be identical to a predefined keyword applicable to the same ele-
ment type.

To permit limited graphical extension of the UML notation as well, a graphic icon or a graphic
marker (such as texture or color) can be associated with a stereotype. The UML does not specify
the form of the graphic specification, but many bitmap and stroked formats exist (and their porta-
bility is a difficult problem). The icon can be used in one of two ways: it may be used instead of or
in addition to the stereotype keyword string as part of the symbol for the base model element that
the stereotype is based on; for example, in a class rectangle it is placed in the upper right corner of
the name compartment. In this form, the normal contents of the item can be seen. Alternately, the
entire base model element symbol may be “collapsed” into an icon containing the element name or
with the name above or below the icon. Other information contained by the base model element
symbol is suppressed. More general forms of icon specification and substitution are conceivable but
we leave these to the ingenuity of tool builders, with the warning that excessive use of extensibility
capabilities may lead to loss of portability among tools.

UML avoids the use of graphic markers, such as color, that present challenges for certain persons
(the color blind) and for important kinds of equipment (such as printers, copiers, and fax machines).
None of the UML symbolgequirethe use of such graphic markers. Useayuse graphic markers

freely in their personal work for their own purposes (such as for highlighting within a tool) but
should be aware of their limitations for interchange and be prepared to use the canonical forms
when necessary.

UML v1.1, Notation Guide

General Extension Mechanisms

The classification hierarchy of the stereotypes themselves could be displayed on a class diagram;
however, this would be a metamodel diagram and must be distinguished (by user and tool) from an

ordinary model diagram. In such a diagram each stereotype is shown as a class with the stereotype
«stereotype» (yes, this is a self-referential usage!). Generalization relationships may show the

extended metamodel hierarchy. Because of the danger of extending the internal metamodel hier-

archy, a tool may, but need not, expose this capability on class diagrams; this is not a capability

required by ordinary modelers

4.3.3 Example
Figure 6. Varieties of stereotype notation
«control» «control» O
PenTracker PenTracker
location: Point location: Point
enable (Mode) enable (Mode)
PenTracker @ @
location: Point
enable (Mode) PenTracker
«calls»
JobManager | — — _ _ _ _ _ | Scheduler
4.3.4 Mapping

The use of a stereotype keyword maps into the stereotype relationship between the Element corre-
sponding to the symbol containing the name and the Stereotype of the given name. The use of a
stereotype icon within a symbol maps into the stereotype relationship between the Element corre-
sponding to the symbol containing the icon and the Stereotype represented by the symbol; a tool
must establish the connection when the symbol is created and there is no requirement that an icon
represent uniquely one stereotype. The use of a stereotype icon instead of a symbol must be created
in a context in which a tool implies a corresponding model element and a Stereotype represented by
the icon; the element and the stereotype have the stereotype relationship.

UML v 1.1, Notation Guide 21

Static Structure Diagrams

5. STATIC STRUCTURE DIAGRAMS

Class diagrams show the static structure of the model, in particular, the things that exist (such as
classes and types), their internal structure, and their relationships to other things. Class diagrams do
not show temporal information, although they may contain reified occurrences of things that have
or things that describe temporal behavior. An object diagram shows instances compatible with a
particular class diagram.

This chapter includes classes and their variations, including templates and instantiated classes, and
the relationships between classes: association and generalization. It includes the contents of classes:
attributes and operations.

5.1 CLASS DIAGRAM

A class diagram is a graph of Classifier elements connected by their various static relationships.
(Note that a “class” diagram may also contain interfaces, packages, relationships, and even
instances, such as objects and links. Perhaps a better name would be “static structural diagram” but
“class diagram” is shorter and well established.)

5.1.1 Semantics

A class diagram is a graphic view of the static structural model. The individual class diagrams do
not represent divisions in the underlying model.

5.1.2 Notation

A class diagram is a collection of (static) declarative model elements, such as classes, interfaces,
and their relationships, connected as a graph to each other and to their contents. Class diagrams may
be organized into packages either with their underlying models or as separate packages that build
upon the underlying model packages.

5.1.3 Mapping

22

A class diagram does not necessarily match a single semantic entity. A package within the static

structural model may be represented by one or more class diagrams; the division of the presentation
into separate diagrams is for graphical convenience and does not imply a partitioning of the model

itself. The contents of a diagram map into elements in the static semantic model. If a diagram is part
of a package, then its contents map into elements in the same package.

UML v1.1, Notation Guide

Static Structure Diagrams

5.2 OBJECT DIAGRAM

An object diagram is a graph of instances, including objects and data values. A static object diagram
is an instance of a class diagram; it shows a snapshot of the detailed state of a system at a point in
time. The use of object diagrams is fairly limited, mainly to show examples of data structures.

Tools need not support a separate format for object diagrams. Class diagrams can contain objects,
so a class diagram with objects and no classes is an “object diagram.” The phrase is useful, however,
to characterize a particular usage achievable in various ways.

5.3 CLASSIFER

Classifieris the metamodel superclassGiéss, DataTypegndinterface.All of these have similar

syntax and are therefore all notated using the rectangle symbol with keywords used as necessary.
Because classes are most common in diagrams, a rectangle without a keyword represents a class,
and the other subclassesGifissifierare indicated with keywords. In the sections that follow, the
discussion will focus o@lass but most of the notation applies to the other element kinds as seman-
tically appropriate and as described later under their own sections.

5.4 CLASS

A classis the descriptor for a set of objects with similar structure, behavior, and relationships. UML
provides notation for declaring classes and specifying their properties, as well as using classes in
various ways. Some modeling elements that are similar in form to classes (such as interfaces, sig-
nals, or utilities) are notated using keywords on class symbols; some of these are separate meta-
model classes and some are stereotypes of Class. Classes are declared in class diagrams and used
in most other diagrams. UML provides a graphical notation for declaring and using classes, as well

as a textual notation for referencing classes within the descriptions of other model elements.

5.4.1 Semantics

A class represents a concept within the system being modeled. Classes have data structure and
behavior and relationships to other elements.

The name of a class has scope within the package in which it is declared and the name must be
unique (among class names) within its package.

5.4.2 Basic notation

A class is drawn as a solid-outline rectangle with 3 compartments separated by horizontal lines. The
top name compartment holds the class name and other general properties of the class (including ste-

UML v 1.1, Notation Guide 23

Static Structure Diagrams

reotype); the middle list compartment holds a list of attributes; the bottom list compartment holds
a list of operations.

See the sections on Name Compartment and List Compartment for more details.

References By default a class shown within a package is assumed to be defined within that
package. To show a reference to a class defined in another package, use the syntax

Package-nameClass-name

as the name string in the name compartment. Compartment names can be used to remove ambiguity,
if necessary (Section 5.6.1). A full pathname can be specified by chaining together package names
separated by double colons (::).

5.4.3 Presentation options

Either or both of the attribute and operation compartments may be suppressed. A separator line is
not drawn for a missing compartment. If a compartment is suppressed, no inference can be drawn
about the presence or absence of elements in it.

Additional compartments may be supplied as a tool extension to show other predefined or user-
defined model properties, for example, to show business rules, responsibilities, variations, events
handled, exceptions raised, and so on. Most compartments are simply lists of strings. More compli-

cated formats are possible, but UML does not specify such formats; they are a tool responsibility.

Appearance of each compartment should preferably be implicit based on its contents. Compartment
names may be used if needed.

Tools may provide other ways to show class references and to distinguish them from class declara-
tions.

A class symbol with a stereotype icon may be “collapsed” to show just the stereotype icon, with the
name of the class either inside the class or below the icon. Other contents of the class are suppressed.

5.4.4 Style guidelines

24

(Note that these are recommendations, not mandates.)

Center class name in boldface.

Center stereotype name in plain face within guillemets above class name.
Being class names with an uppercase letter.

Left justify attributes and operations in plain face.

Begin attribute and operation names with a lowercase letter.

UML v1.1, Notation Guide

Static Structure Diagrams

Show the names of abstract classes or the signatures of abstract operations in italics

As a tool extension, boldface may be used for marking special list elements, for example, to desig-
nate candidate keys in a database design. This might encode some design property modeled as a
tagged value, for example.

Show full attributes and operations when needed and suppress them in other contexts or references.

5.4.5 Example

Figure 7. Class notation: details suppressed, analysis-level details, implementation-level details

Window
. {abstract,
Window author=Joe,
status=tested}
+size: Area = (100,100)
#visibility: Boolean = invisible
Window +default-size: Rectangle
#maximum-size: Rectangle
-xptr: XWindow*

size: Area
visibility: Boolean +display (
. +hide ()
g(gp lay () +create ()
ide () -attachXWindow(xwin: Xwindow?*)
5.4.6 Mapping

A class symbol maps into a Class element within the package that owns the diagram. The name
compartment contents map into the class name and into properties of the class (built-in attributes or
tagged values). The attribute compartment maps into a list of Attributes of the Class. The operation
compartment maps into a list of Operations of the Class.

5.5 NAME COMPARTMENT

5.5.1 Notation

Displays the name of the class and other properties in up to 3 sections:

UML v 1.1, Notation Guide 25

Static Structure Diagrams

An optional stereotype keyword may be placed above the class name within guillemets, and/or a
stereotype icon may be placed in the upper right corner of the compartment. The stereotype name
must not match a predefined keyword.

The name of the class appears next. If the class is abstract, its name appears in italics. But note that
any explicit specification of generalization status take precedence over the name font.

A list of strings denoting properties (metamodel attributes or tagged values) may be placed in braces
below the class name. The list may show class-level attributes for which there is no UML notation
and it may also show tagged values. The presence of a keyword for a Boolean type without a value
implies the valudrue. For example, a leaf class shows the property “{leaf}".

The stereotype and property list are optional.

Figure 8. Name compartment

«controller» @

PenTracker

{ leaf, author="Mary Jones”}

5.5.2 Mapping

The contents of the name compartment map into the name, stereotype, and various properties of the
Class represented by the class symbol.

5.6 LIST COMPARTMENT

5.6.1 Notation

26

Holds a list of strings, each of which is the encoded representation of a feature, such as an attribute
or operation. The strings are presented one to a line with overflow to be handled in a tool-dependent
manner. In addition to lists of attributes or operations, optional lists can show other kinds of pre-
defined or user-defined values, such as responsibilities, rules, or modification histories; UML does
not define these optional lists. The manipulation of user-defined lists is tool-dependent.

The items in the list are ordered and the order may be modified by the user. The order of the ele-
ments is meaningful information and must be accessible within tools. For example, it may be used
by a code generator in generating a list of declarations. The list elements may be presented in a dif-
ferent order, however, to achieve some other purpose. For example, they may be sorted in some way.

UML v1.1, Notation Guide

Static Structure Diagrams

Even if the list is sorted, however, the items maintain their original order in the underlying model,
the ordering information is merely suppressed in the view.

An ellipsis (. . .) as the final element of a list or the final element of a delimited section of a list
indicates that there exist additional elements in the model that meet the selection condition but that
are not shown in that list. Such elements may appear in a different view of the list.

Group properties: A property string may be shown as a element of the list, in which case it applies

to all of the succeeding list elements until another property string appears as a list element. This is
equivalent to attaching the property string to each of the list elements individually. The property
string does not designate a model element. Examples of this usage include indicating a stereotype
and specifying visibility. Keyword strings may also be used in a similar way to qualify subsequent
list elements.

Compartment name A compartment may display a hame to indicate which kind of compartment

it is. The name is displayed in a distinctive font centered at the top of the compartment. This capa-
bility is useful if some compartments are omitted or if additional user-defined compartments are
added. For a Class, the predefined compartments are ratinibadites and operations. An
example of a user-defined compartment mighelpgirements. The name compartment in a class
must always be present and therefore does not require or permit a compartment name.

5.6.2 Presentation options

A tool may present the list elements in a sorted order, in which case the inherent ordering of the
elements is not visible. A sort is based on some internal property and does not indicate additional
model information. Example sort rules include alphabetical order, ordering by stereotype (such as
constructors, destructors, then ordinary methods), ordering by visibility (public, then protected,
then private), etc.

The elements in the list may be filtered according to some selection rule. The specification of selec-
tion rules is a tool responsibility. The absence of items from a filtered list indicates that no elements
meet the filter criterion, but no inference can be drawn about the presence or absence of elements
that do not meet the criterion (however, the ellipsis notation is available to show that invisible ele-
ments exist). It is a tool responsibility whether and how to indicate the presence of either local or
global filtering, although a stand-alone diagram should have some indication of such filtering if it

is to be understandable.

If a compartment is suppressed, no inference can be drawn about the presence or absence of its ele-
ments. An empty compartment indicates that no elements meet the selection filter (if any).

Note that attributes may also be shown by composition (see Figure 25).

UML v 1.1, Notation Guide 27

Static Structure Diagrams

5.6.3 Example

Figure 9. Stereotype keyword applied to groups of list elements

Rectangle

pl:Point
p2:Point

«constructor»
Rectangle(p1:Point, p2:Point)
«quel’y»

area (): Real

aspect (): Real

.«.ubdate»
move (delta: Point)
scale (ratio: Real)

Figure 10. Compartments with names

Reservation

operations

guarantee()
cancel ()
change (newDate: Date)

responsibilities

bill no-shows
match to available rooms

exceptions

invalid credit card

28

UML v1.1, Notation Guide

Static Structure Diagrams

5.6.4 Mapping

The entries in a list compartment map into a list of ModelElements, one for each list entry. The
ordering of the ModelElements matches the list compartment entries unless the list compartment is
sorted in some way), in which case no implication about the ordering of the Elements can be made
(the ordering can be seen by turning off sorting). However, a list entry string that is a stereotype
indication (within guillemets) or a property indication (within braces) does not map into a separate
ModelElement. Instead the corresponding property applies to each subsequent ModelElement until
the appearance of a different stand-alone stereotype or property indicator.The property specifica-
tions are conceptually duplicated for each list Element, although a tool might maintain an internal
mechanism to store or modify them together. The presence of an ellipsis (“...”) as a list entry implies
that the semantic model contains at least one Element with corresponding properties that is not vis-
ible in the list compartment.

5.7 ATTRIBUTE

Used to show attributes in classes. A similar syntax is used to specify qualifiers, template parame-
ters, operation parameters, and so on (some of these omit certain terms).

5.7.1 Semantics

Note that an attribute is semantically equivalent to a composition association. However, the intent
and usage is normally different.

The type of an attribute is a TypeExpression. It may resolve to a class name or it may be complex,
such agrray[String] of Point. In any case, the details of the attribute type expressions are not spec-
ified by UML; they depend on the expression syntax supported by the particular specification or
programming language being used.

5.7.2 Notation

An attribute is shown as a text string that can be parsed into the various properties of an attribute
model element. The default syntax is:

visibility name: type-expressior initial-value { property-string}
wherevisibility is one of:

+ public visibility
protected visibility

- private visibility

UML v 1.1, Notation Guide 29

Static Structure Diagrams

The visibility marker may be suppressed. The absence of a visibility marker indi-
cates that the visibility is not shown (not that it is undefined or public). A tool

should assign visibilities to new attributes even if the visibility is not shown. The
visibility marker is a shorthand for a fulisibility property specification string.

Visibility may also be specified by keywordaiplic, protected, privajeThis form
is particularly used when used as an inline list element that applies to an entire
block of attributes.

Additional kinds of visibility might be defined for certain programming languages,
such as C+implementatiowisibility (actually all forms of nonpublic visibility are
language-dependent). Such visibility must be specified by property string or by a
tool-specific convention.

wherenameis an identifier string that represents the name of the attribute;

wheretype-expressiois a language-dependent specification of the implementation type of
an attribute;

whereinitial-value is a language-dependent expression for the initial value of a newly cre-
ated object. The initial value is optional (the equal sign is also omitted). An explicit con-
structor for a new object may augment or modify the default initial value;

whereproperty-stringindicates property values that apply to the element. The property
string is optional (the braces are omitted if no properties are specified);

A class-scope attribute is shown by underlining the name and type expression string; otherwise the
attribute is instance-scope. The notation justification is that a class-scope attribute is an instance
value in the executing system, just as an object is an instance value, so both may be designated by
underlining. An instance-scope attribute is not underlined; that is the default.

class-scope-attribute

There is no symbol for whether an attribute is changeable (the default is changeable). A nonchange-
able attribute is specified with the property “{frozen}".

In the absence of a multiplicity indicator an attribute holds exactly 1 value. Multiplicity may be indi-
cated by placing a multiplicity indicator in brackets after the attribute name, for example:

colors [3]: Color
points [2..*]: Paoint

Note that a multiplicity of 0..1 provides for the possibility of null values: the absence of a value, as
opposed to a particular value from the range. For example, the following declaration permits a dis-
tinction between thaull value and the empty string:

name [0..1]: String

A stereotype keyword in guillemets precedes the entire attribute string, including any visibility indi-
cators. A property list in braces follows the entire attribute string.

30 UML v1.1, Notation Guide

Static Structure Diagrams

5.7.3 Presentation options

The type expression may be suppressed (but it has a value in the model).

The initial value may be suppressed, and it may be absent from the model. It is a tool responsibility
whether and how to show this distinction.

A tool may show the visibility indication in a different way, such as by using a special icon or by
sorting the elements by group.

A tool may show the individual fields of an attribute as columns rather than a continuous string.

The syntax of the attribute string can be that of a particular programming language, such as C++ or
Smalltalk. Specific tagged properties may be included in the string.

Particular attributes within a list may be suppressed (see List Compartment).
5.7.4 Style guidelines

Attribute names typically begin with a lowercase letter.

Attribute names in plain face.
5.7.5 Example

+size: Area = (100,100)
#visibility: Boolean = invisible
+default-size: Rectangle
#maximum-size: Rectangle
-xptr: XWindowPtr

5.7.6 Mapping

A string entry within the attribute compartment maps into an Attribute within the Class representing
the class symbol. The properties of the attribute map in accord with the preceding descriptions. If
the visibility is absent, then no conclusion can be drawn about the Attribute visibilities unless a filter
is in effect (e.g., only public attributes shown). Likewise if the type or initial value are omitted. The
omission of an underline always indicates an instance-scope attribute, however. The omission of
multiplicity denotes a multiplicity of 1.

Any properties specified in braces following the attribute string map into properties on the
Attribute. In addition, any properties specified on a previous stand-alone property specification
entry apply to the current Attribute (and to others).

UML v 1.1, Notation Guide 31

Static Structure Diagrams

5.8 OPERATION

Used to show operations defined on classes. Also used to show methods supplied by classes.

5.8.1 Operation

An operation is a service that an instance of the class may be requested to perform. It has a name
and a list of arguments.

5.8.2 Notation

32

An operation is shown as a text string that can be parsed into the various properties of an operation
model element. The default syntax is:

visibility name(parameter-list) : return-type-expressiofiproperty-string}
wherevisibility is one of:

+ public visibility
protected visibility
- private visibility

The visibility marker may be suppressed. The absence of a visibility marker indi-
cates that the visibility is not shown (not that it is undefined or public). The visi-
bility marker is a shorthand for a fulisibility property specification string.

Visibility may also be specified by keywordgsuplic, protected, privaje This form
is particularly used when used as an inline list element that applies to an entire
block of operations.

Additional kinds of visibility might be defined for certain programming languages,
such as C+implementatiowisibility (actually all forms of nonpublic visibility are
language-dependent). Such visibility must be specified by property string or by a
tool-specific convention.

wherenameis an identifier string;

wherereturn-type-expressiois a language-dependent specification of the implementation
type or types of the value returned by the operation. If the return-type is omitted if the oper-
ation does not return a value (C++ void). A list of expressions may be supplied to indicate
multiple return values.

whereparameter-lisis a comma-separated list of formal parameters, each specified using
the syntax:

kind name type-expression default-value

UML v1.1, Notation Guide

Static Structure Diagrams

wherekind isin, out, or inout, with the defaulin if absent;
wherenameis the name of a formal parameter;

wheretype-expressiors the (language-dependent) specification of an implemen-
tation type;

wheredefault-valuas an optional value expression for the parameter, expressed in
and subject to the limitations of the eventual target language;

whereproperty-stringindicates property values that apply to the element. The property
string is optional (the braces are omitted if no properties are specified);

A class-scope operation is shown by underlining the name and type expression string. An instance-
scope operation is the default and is not marked.

An operation that does not modify the system state (one that has no side effects) is specified by the
property “{query}’; otherwise the operation may alter the system state, although there is no guar-
antee that it will do so.

The concurrency semantics of an operation are specified by a property string with one of the names:
sequential, guarded, concurrenh the absence of a specification the concurrency semantics are
undefined and must be assumed to be sequential in the worst case.

The top-most appearance of an operation signature declares the operation on the class (and therefore
inherited by all of its descendents). If this class does not implement the operation (i.e., does not
supply a method) then the operation may be marked as “{abstract}’ or the operation signature may
be italicized to indicate that it is abstract. Any subordinate appearances of the operation signature
indicate that the subordinate class implements a method on the operation. (The specification of
“{abstract}” or italics on a subordinate class would not indicate a method but this usage of the nota-
tion would be poor form.)

The actual text or algorithm of a method may be indicated in a note attached to the operation entry.

An operation entry with the stereotype «signal» indicates that the class accepts the given signal. The
syntax is identical to that of an operation.

The specification of operation behavior is given as a note attached to the operation. The text of the
specification should be enclosed in braces if it is a formal specification in some language (a

semantic Constraint), otherwise it should be plain text if it is just a natural-language description of

the behavior (a Comment).

A stereotype keyword in guillemets precedes the entire operation string, including any visibility
indicators. A property list in braces follows the entire operation string.

5.8.3 Presentation options

The argument list and return type may be suppressed (together, not separately).

UML v 1.1, Notation Guide 33

Static Structure Diagrams

A tool may show the visibility indication in a different way, such as by using a special icon or by
sorting the elements by group.

The syntax of the operation signature string can be that of a particular programming language, such
as C++ or Smalltalk. Specific tagged properties may be included in the string.

5.8.4 Style guidelines

Operation names typically begin with a lowercase letter.
Operation names in plain face.

An abstract operation may be shown in italics.

5.8.5 Example

Figure 11. Operation list with a variety of operations

+display (): Location
+hide ()

+create ()

-attachXWindow(xwin:Xwindow?*)

5.8.6 Mapping

A string entry within the operation compartment maps into an Operation or a Method within the
Class representing the class symbol. The properties of the operation map in accord with the pre-
ceding descriptions. See the description of Attribute for additional details.

The topmost appearance of an operation specification in a class hierarchy maps into an Operation
definition in the corresponding Class or Interface. Interfaces do not have methods. In a Class, each
appearance of an operation entry maps into the presence of a Method in the corresponding Class,
unless the operation entry contains the {abstract} property (including use of conventions such as
italics for abstract operations).If an abstract operation entry appears within a hierarchy in which the
same operation has already been defined in an ancestor, it has no effect but is not an error unless the
declarations are inconsistent.

Note that the operation string entry does not specify the body of a method.
5.8.7 Signal reception

If the objects of a class accept and respond to a given signal, that fact can be indicated using the
same syntax as an operation with the keyword «signal». The response of the object to the reception

34 UML v1.1, Notation Guide

Static Structure Diagrams

of the signal is shown with a state machine. Among other uses, this notation can show the response
of objects of a class to error conditions and exceptions, which should be modeled as signals.

5.9 TYPE vS. IMPLEMENTATION CLASS

5.9.1 Semantics

Classes can be specialized by stereotypes into Types and Implementation Classes (although they
can be left undifferentiated as well). A Type characterizes a changeable role that an object may
adopt and later abandon. An Implementation Class defines the physical data structure and proce-
dures of an object as implemented in traditional languages (C++, Smalltalk, etc.). An object may
have multiple Types (which may change dynamically) but only one ImplementationClass (which is
fixed). Although the usage of Types and ImplementationClasses is different, their internal structure

is the same, so they are modeled as stereotypes of Class. All kinds of Class require that a subclass
fully support the features of the superclass, including support for all inherited attributes, associa-
tions, and operations.

5.9.2 Notation

An undifferentiated class is shown with no stereotype. A type is shown with the stereotype
“«type»”. An implementation class is shown with the stereotype “«implementation class»”. A tool
is also free to allow a default setting for an entire diagram, in which case all of the class symbols
without explicit stereotype indications map into Classes with the default stereotype; this might be
useful for a model that is close to the programming level.

The implementation of a type by an implementation class is modeled as the Realizes relationship,
shown as a dashed line with a solid triangular arrowhead (a dashed “generalization arrow”). This
symbol implies inheritance of operations but not of structure (attributes or associations).

UML v 1.1, Notation Guide 35

Static Structure Diagrams

5.9.3 Example
Figure 12. Notation for types and implementation classes
«type» «implementation class»
Collection HashTable

/\

«type» «implementation class»
Set 4 _____ HashTableSet
elements: Collection elements: Collection
addElement(Object) addElement(Object)
removeElement(Object) removeElement(Object)
testElement(Object):Boolean testElement(Object):Boolean
setTableSize(Integer)

5.9.4 Mapping

A class symbol with a stereotype (including “type” and “implementation class”) maps into a Class
with the corresponding stereotype. A class symbol without a stereotype maps into a Class with the
default stereotype for the diagram (if a default has been defined by the modeler or tool), otherwise
it maps into a Class with no stereotype. This symbol is normally used between a class and an inter-
face but may also be used between any two classifiers to show inheritance of operations only
without inheritance of attributes or associations.

5.10 INTERFACES

5.10.1 Semantics

An interface is a specifier for the externally-visible operations of a class, component, or other entity
(including summarization units such as packages) without specification of internal structure. Each
interface often specifies only a limited part of the behavior of an actual class. Interfaces do not have

36 UML v1.1, Notation Guide

Static Structure Diagrams

implementation; they lack attributes, states, or associations; they only have operations. Interfaces
may have generalization relationships. An interface is formally equivalent to an abstract class with
no attributes and no methods and only abstract operations, but Interface is a peer of Class within the
UML metamodel; both are Classifiers.

5.10.2 Notation

An interface is a Classifer and may also be shown using the full rectangle symbol with compart-
ments and the keyword «interface». A list of operations supported by the interface is placed in the
operation compartment. The attribute compartment may be omitted because it is always empty.

An interface may also be displayed as a small circle with the name of the interface placed below the
symbol. The circle may be attached by a solid line to classes that support it (also to higher-level
containers, such as packages that contain the classes). This indicates that the class provides all of
the operations in the interface type (and possibly more). The operations provided are not shown on
the circle notation; use the full rectangle symbol to show the list of operations. A class that uses or
requires the operations supplied by the interface may be attached to the circle by a dashed arrow
pointing to the circle. The dashed arrow implies that the class requires no more than the operations
specified in the interface; the client class is not required to actualgllusithe interface opera-

tions.

The Realizes relationship from a class to an interface that it supports is shown by a dashed line with
a solid triangular arrowhead (a “dashed generalization symbol”). This is the same notation used to
indicate realization of a type by an implementation class. In fact, this symbol can be used between
any two classifier symbols, with the meaning that the client (the one at the tail of the arrow) supports
at least all of the operations defined in the supplier (the one at the head of the arrow), but with no
necessity to support any of the data structure of the supplier (attributes and associations).

UML v 1.1, Notation Guide 37

Static Structure Diagrams

5.10.3 Example

Figure 13. Interface notation on class diagram

Hashable
String L e - -
= HashTable
isEqual(String):Boolean .&ten%é ______

.hfs\-sh():lnteger Comparable Pid

~ e
N e
N P < «uses»

N e

2\ z
«interface»
Comparable

isEqual(String):Boolean
hash():Integer

5.10.4 Mapping

A class rectangle symbol with stereotype «interface» or a circle on a class diagram maps into an
Interface element with the name given by the symbol. The operation list of a rectangle symbol maps
into the list of Operation elements of the Interface.

A dashed generalization arrow from a class symbol to an interface symbol or a solid line connecting
a class symbol and an interface circle maps into a realization-specification relationship between the

corresponding Class and Interface elements. A dependency arrow from a class symbol to an inter-
face symbol maps into a «uses» dependency between the corresponding Class and Interface.

5.11 PARAMETERIZED CLASS (TEMPLATE)
5.11.1 Semantics

A template is the descriptor for a class with one or more unbound formal parameters. It therefore
defines a family of classes, each class specified by binding the parameters to actual values. Typi-
cally the parameters represent attribute types, but they can also represent integers, other types, or

38 UML v1.1, Notation Guide

Static Structure Diagrams

even operations. Attributes and operations within the template are defined in terms of the formal
parameters so they too become bound when the template itself is bound to actual values.

A template is not a directly-usable class because it has unbound parameters. Its parameters must be
bound to actual values to create a bound form that is a class. Only a class can be s superclass or the
target of an association (a one-way associdtimm the templatd¢o another class is permissible,
however). A template may be a subclass of an ordinary class; this implies that all classes formed by
binding it are subclasses of the given superclass.

Parameterization can be applied to other ModelElements, such as Collaborations or even entire
Packages.The description given here for classes applies to other kinds of modeling elements in the
obvious way.

5.11.2 Notation

A small dashed rectangle is superimposed on the upper right-hand corner of the rectangle for the
class (or to the symbol for another modeling element). The dashed rectangle contains an parameter
list of formal parameters for the class and their implementation types. The list must not be empty,
although it might be suppressed in the presentation. The name, attributes, and operations of the
parameterized class appear as normal in the class rectangle, but they may also include occurrences
of the formal parameters. Occurrences of the formal parameters can also occur inside of a context
for the class, for example, to show a related class identified by one of the parameters

5.11.3 Presentation options

The parameter list may be comma-separated or it may be one per line.
Parameters are restricted attributes, shown as strings with the syntax
name: type
wherenameis an identifier for the parameter with scope inside the template;
wheretypeis a string designating®ypeExpressiofor the parameter.

If the type name is omitted, it is assumed to be a type expression that resolves to a classifier, such
as a class name or a data type. Other parameter types (dntgdgas) must be explicitly shown;
they must resolve to valid type expressions.

UML v 1.1, Notation Guide 39

Static Structure Diagrams

5.11.4 Example

Figure 14. Template notation with use of parameter as a reference

, T.k:Integer
FArray “~~-~---7- -
K..k
T
AN .
 «bind» (Address,24)
N
FArray<Point,3> AddressList

5.11.5 Mapping

The addition of the template dashed box to a symbol causes the addition of the parameter names in
the list as ModelElements within the Namespace of the ModelElement corresponding to the base

symbol. Each of the parameter ModelElements has the templateParameter association to the
Namespace.

5.12 BOUND ELEMENT

5.12.1 Semantics

40

A template cannot be used directly in an ordinary relationship such as generalization or association,
because it has a free parameter that is not meaningful outside of a scope that declares the parameter.
To be used, a template’s parameters mudicamdto actual values. The actual value for each
parameter is an expression defined within the scope of use. If the referencing scope is itself a tem-
plate, then the parameters of the referencing template can be used as actual values in binding the
referenced template, but the parameter names in the two templates cannot be assumed to corre-
spond, because they have no scope outside of their respective templates.

UML v1.1, Notation Guide

Static Structure Diagrams

5.12.2 Notation

A bound element is indicated by a text syntax in the name string of an element, as follows:
Template-namé<* value-list'>’
wherevalue-listis a comma-delimited non-empty list of value expressions;
whereTemplate-names identical to the name of a template.

For exampleYArray<Point,3> designates a class described by the tempkatey.

The number and types of the values must match the number and types of the template parameters
for the template of the given name.

The bound element name may be used anywhere that an element name of the parameterized kind
could be used. For example, a bound class name could be used within a class symbol on a class dia-
gram, as an attribute type, or as part of an operation signature.

Note that a bound element is fully specified by its template, therefore its content may not be
extended; declaration of new attributes or operations for classes is not permitted, for example, but
a bound class could be subclassed and the subclass extended in the usual way.

The relationship between the bound element and its template may alternatively be shown by a
Dependency relationship with the keyword «bind». The arguments are shown in parentheses after
the keyword. In this case the bound form may be given a name distinct from the template.

5.12.3 Style guidelines

The attribute and operation compartments are normally suppressed within a bound class, because
they must not be modified in a bound template.

5.12.4 Example
See Figure 14.

5.12.5 Mapping

The use of the bound element syntax for the name of a symbol maps into a Binding dependency
between the dependent ModelElement (such as Class) corresponding to the bound element symbol
and the provider ModelElement (again, such as Class) whose name matches the name part of the
bound element without the arguments. If the name does not match a template element or if the
number of arguments in the bound element does not match the number of parameters in the tem-
plate, then the model is ill formed. Each argument in the bound element maps into a ModelElement

UML v 1.1, Notation Guide 41

Static Structure Diagrams

bearing a templateArgument association to the Namespace of the bound element. The Binding rela-
tionship bears the list of actual argument values.

5.13 UTILITY

A utility is a grouping of global variables and procedures in the form of a class declaration. This is
not a fundamental construct but a programming convenience. The attributes and operations of the
utility become global variables and procedures. A utility is modeled as a stereotype of a class.

5.13.1 Semantics

The instance-scope attributes and operations of a utility are interpreted as global attributes and oper-
ations. It is inappropriate for a utility to declare class-scope attributes and operations because the
instance-scope members are already interpreted as being at class scope.

5.13.2 Notation

Shown as the stereotype «utility» of Class. It may have both attributes and operations, all of which
are treated as global attributes and operations.

5.13.3 Example

Figure 15. Notation for utility

«utility»
MathPak

sin (Angle): Real
cos (Angle): Real
sqrt (Real): Real
random(): Real

5.13.4 Mapping

This is not a special symbol. It simply maps into a Class element with the «utility» stereotype.

42 UML v1.1, Notation Guide

Static Structure Diagrams

5.14 METACLASS

5.14.1 Semantics

A metaclass is a class whose instances are classes.
5.14.2 Notation

Shown as the stereotype «metaclass» of Class.
5.14.3 Mapping

This is not a special symbol. It simply maps into a Class element with the «metaclass» stereotype.

5.15 CLAss PATHNAMES

5.15.1 Notation

Class symbols (rectangles) serve to define a class and its properties, such as relationships to other
classes. A reference to a class in a different package is notated by using a pathname for the class, in
the form:

package-name class-name

References to classes also appear in text expressions, most notably in type specifications for
attributes and variables. In these places a reference to a class is indicated by simply including the
name of the class itself, including a possible package name, subject to the syntax rules of the expres-
sion.

UML v 1.1, Notation Guide 43

Static Structure Diagrams

5.15.2 Example

Figure 16. Pathnames for classes in other packages

Banking::CheckingAccount

Deposit

time: DateTime::Time
amount: Currency::Cash

5.15.3 Mapping

A class symbol whose name string is a pathname represents a reference to the Class with the given
name inside the package with the given name. The name is assumed to be defined in the target
package, otherwise the model is ill formed. A Relationship from a symbol in the current package
(i.e., the package containing the diagram and its mapped elements) to a symbol in another package
is part of the current package.

5.16 IMPORTING A PACKAGE

5.16.1 Semantics

44

A class in another package may be referenced. On the package level, the «imports» dependency
indicates that the contents of the target packages may be referenced by the client package or pack-
ages recursively embedded within it. The target references must have visibility sufficient for the ref-
erents. Visibilities may be specified on model elements and on packages. If a model element is
nested inside one or more packages, the visibilities of the element and all of its containers combine
according to the rule that the most restrictive visibility in the set is obtained. It is not possible to
selectively export certain elements from within a nested package; the visibility of the outer package
is applied to each element exported by an inner package. Imports are recursive within nested levels
of packages. A descendent of a class requires at least “protected” visibility; any other class requires
“public” visibility. (See the semantics document for full details.)

Note that an imports dependency does not modify the namespace of the client or in any other way
automatically create references; it merely grants permission to establish references. Note also that

UML v1.1, Notation Guide

Static Structure Diagrams

a tool could automatically create imports dependencies for users if desired when references are cre-
ated.

5.16.2 Notation

The imports dependency is displayed as a dependency arrow from the referencing (client) package
to the target (supplier) package containing the target of the references. The arrow has the stereotype
«import». This dependency indicates that elements within the client package may legally reference
elements within the supplier. The references must also satisfy visibility constraints specified by the
supplier. Note that the dependency does not automatically create any references; it merely grants
permission for them to be established.

5.16.3 Example

Figure 17. Imports dependency among packages

Customers

Banking::CheckingAccount

«import»

|
|
|
Banking W

CheckingAccount

5.16.4 Mapping

This is not a special symbol. It maps into a Dependency with the stereotype «import» between the
two packages.

UML v 1.1, Notation Guide 45

Static Structure Diagrams

5.17 OBJECT

5.17.1 Semantics

An object represents a particular instance of a class. It has identity and attribute values. The same
notation also represents a role within a collaboration because roles have instance-like characteris-
tics.

5.17.2 Notation

46

The object notation is derived from the class notation by underlining instance-level elements, as
explained in the general comments in Section 2.11.

An object shown as a rectangle with two compartments.
The top compartment shows the name of the object and its class, all underlined, using the syntax:
objectname classname

The classname can include a full pathname of enclosing package, if necessary. The package names
precede the classname and are separated by double colons. For example:

display_window: WindowingSystem::GraphicWindows::Window
A stereotype for the class may be shown textually (in guillemets above the name string) or as an
icon in the upper right corner. The stereotype for an object must match the stereotype for its class.

To show multiple classes that the object is an instance of, use a comma-separated list of classnames.
These classnames must be legal for multiple classification (i.e., only one implementation class per-
mitted but multiple roles permitted).

To show the presence of an object in a particular state of a class, use the syntax:
The list must be a comma-separated list of names of states that can legally occur concurrently.

The second compartment shows the attributes for the object and their values as a list. Each value
line has the syntax:

attributename type=value
The type is redundant with the attribute declaration in the class and may be omitted.

The value is specified as a literal value. UML does not specify the syntax for literal value expres-
sions but it is expected that a tool will specify such a syntax using some programming language.

UML v1.1, Notation Guide

Static Structure Diagrams

5.17.3 Presentation options

The name of the object may be omitted. In this case the colon should be kept with the class name.
This represents an anonymous object of the given class given identity by its relationships.

The class of the object may be suppressed (together with the colon).
The attribute value compartment as a whole may be suppressed.
Attributes whose values are not of interest may be suppressed.

Attributes whose values change during a computation may show their values as a list of values held
over time. This is a good opportunity for the use of animation by a tool (the values would change
dynamically). An alternate notation is to show the same object more than once with a «<becomes»
relationship between them.

5.17.4 Style guidelines

Objects may be shown on class diagrams. The elements on collaboration diagrams are not objects,
because they describe many possible objects; they are instead roles that may be held by object.
Objects in class diagrams serve mainly to show examples of data structures.

5.17.5 Variations

For a language such 8elfin which operations can be attached to individual objects at run time, a
third compartment containing operations would be appropriate as a language-specific extension.

UML v 1.1, Notation Guide 47

Static Structure Diagrams

5.17.6 Example

Figure 18. Objects

triangle: Polygon triangle

center = (0,0)
vertices = ((0,0),(4,0),(4,3))

borderColor = black
fillColor = white ‘Polvaon
triangle: Polygon f
scheduler

5.17.7 Mapping

The mapping of an object symbol depends on the diagram:

Within a collaboration, it maps into a ClassifierRole of the corresponding Collaboration. The role
has the name specified by thlgiectnameoortion of the symbol name string. The ClassifierRole has
a type assaciation to the Class whose name appearslagheam@art of the symbol name string.

In an object diagram or within an ordinary class diagram, it maps into an Object of the Class given
by theclassnameart of the name string. The values of the attributes are given by the value expres-
sions in the attribute list in the symbol.

5.18 COMPOSITE OBJECT

5.18.1 Semantics

A composite object represents a high-level object made of tightly-bound parts. This is an instance
of a composite class, which implies the composition aggregation between the class and its parts. A
composite object is similar to (but simpler and more restricted than) a collaboration, but it is defined
completely by composition in a static model.

48 UML v1.1, Notation Guide

Static Structure Diagrams

5.18.2 Notation

A composite object is shown as an object symbol. The name string of the composite object is placed
in a compartment near the top of the rectangle (as with any object). The lower compartment holds
the parts of the composite object instead of a list of attribute values. (However, even a list of
attributes values may be regarded as the parts of a composite object, so there is not such a differ-
ence.) It is possible for some of the part to themselves be composite objects with further nesting.

5.18.3 Example

Figure 19. Composite object

awindow : Window

horizontalBar:ScrollBar

verticalBar:ScrollBar

moves

surface:Pane
moves

title: TitleBar

5.18.4 Mapping

A composite object symbol maps into an Object of the given Class with composition links to each
of the Objects and Links corresponding to the class box symbols and association path symbols

directly contained within the boundary of the composite object symbol (and not contained within
another deeper boundary).

UML v 1.1, Notation Guide 49

Static Structure Diagrams

5.19 ASSOCIATION

Binary associations are shown as lines connecting two class symbols. The lines may have a variety
of adornments to show their properties. Ternary and higher-order associations are shown as dia-
monds connected to class symbols by lines.

5.20 BINARY ASSOCIATION

5.20.1 Semantics

A binary association is an association among exactly two classes (including the possibility of a
reflexive association from a class to itself).

5.20.2 Notation

50

A binary association is drawn as a solid path connecting two class symbols (both ends may be con-
nected to the same class, but the two ends are distinct). The path may consist of one or more con-
nected segments. The individual segments have no semantic significance but may be graphically
meaningful to a tool in dragging or resizing an association symbol. A connected sequences of seg-
ments is called path

Un a binary association both ends may attach to the same class. The links of such an association
may connect two different objects from the same class or one object to itself. The latter case is a
reflexiveassociation; it may be forbidden by a constraint if necessary.

The end of an association where it connects to a class is calledammation roleMost of the inter-
esting information about an association is attached to its roles. See the section on Association Role
for details.

The path may also have graphical adornments attached to the main part of the path itself. These
adornments indicate properties of the entire association. They may be dragged along a segment or
across segments but must remain attached to the path. It is a tool responsibility to determine how
close association adornments may approach a role so that confusion does not occur. The following
kinds of adornments may be attached to a path:

association name

Designates the (optional) name of the association.

Shown as a name string near the path (but not near enough to an end to be confused
with a rolename). The name string may have an optional small black solid triangle

in it; the point of the triangle indicates the direction in which to read the name. The
name-direction arrow has no semantics significance; it is purely descriptive. The
classes in the association are ordered as indicated by the name-direction arrow.

UML v1.1, Notation Guide

Static Structure Diagrams

(Note that there is no need foname directiorproperty on the association model;

the ordering of the classes within the associatdhe name direction. This con-
vention works even with n-ary associations.) A stereotype keyword within
guillemets may be placed above or in front of the association name. A property
string may be placed after or below the association name.

association class symbol

Designates an association that has class-like properties, such as attributes, opera-
tions, and other associations. This is present if and only if the association is an asso-
ciation class.

Shown as a class symbol attached to the association path by a dashed line.

The association path and the association class symbol represent the same under-
lying model element which has a single name. The name may be placed on the path,
in the class symbol, or on both (but they must be the same name).

Logically the association class and the association are the same semantic entity, but
they are graphically distinct. The association class symbol can be dragged away
from the line but the dotted line must remain attached to both the path and the class
symbol.

5.20.3 Presentation options

When two paths cross, the crossing may optionally be shown with a small semicircular jog to indi-
cate that the paths do not intersect (as in electrical circuit diagrams). Alternately crossing can be
unmarked but connections might be shown by small dots.

5.20.4 Style guidelines

Lines may be drawn using various styles, including orthogonal segments, oblique segments, and
curved segments. The choice of a particular set of line styles is a user choice.

5.20.5 Options

Or-association. An or-constraint indicates a situation in which only one of several potential associ-
ations may be instantiated at one time for any single object. This is shown as a dashed line con-
necting two or more associations, all of which must have a class in common, with the constraint
string “{or}" labeling the dashed line. Any instance of the class may only participate in at most one
of the associations at one time. Each rolename must be different. (This is simply a predefined use
of the constraint notation.)

UML v 1.1, Notation Guide 51

Static Structure Diagrams

5.20.6 Example

Figure 20. Association notation

<
Company . J'Ob b Person
employer | employee
|
Job boss
salary
0.1
worker |
<Manages
|
Account |{Or}

\‘\ Corporation

5.20.7 Mapping

An association path connecting two class symbols maps to an Association between the corre-
sponding Classes. If there is an arrow on the association name, then the Class corresponding to the
tail of the arrow is the first class and the Class corresponding to the head of the arrow is the second
Class in the ordering of roles of the Association; otherwise the ordering of roles in the association
is undetermined. The adornments on the path map into properties of the Association as described
above. The Association is owned by the package containing the diagram.

5.21 ASSOCIATION END

5.21.1 Semantics

An association end is simply an end of an association where it connects to a class. It is part of the
association, not part of the class. Each association has two or more ends. Most of the interesting

52 UML v1.1, Notation Guide

Static Structure Diagrams

details about an association are attached to its ends. An association end is not a separable element;
it is just a mechanical part of an association.

5.21.2 Notation

The path may have graphical adornments at each end where the path connects to the class symbol.
These adornments indicate properties of the association related to the class. The adornments are part
of the association symbol, not part of the class symbol. The end adornments are either attached to
the end of the line or near the end of the line and must drag with it. The following kinds of adorn-
ments may be attached to an association end:

multiplicity — specified by a text syntax, see detail section. Multiplicity may be suppressed
on a particular association or for an entire diagram. In an incomplete model the multiplicity
may be unspecified in the model itself, in which case it must be suppressed in the notation.

ordering — if the multiplicity is greater than one, then the set of related elements can be
ordered or unordered. If no indication is given, then it is unordered (the elements form a
set). Various kinds of ordering can be specified as a constraint on the association end. The
declaration does not specify how the ordering is established or maintained; operations that
insert new elements must make provision for specifying their position either implicitly
(such as at the end) or explicitly. Possible values include:

unordered — the elements form an unordered set. This is the default and need not
be shown explicitly.

ordered — the elements of the set are ordered into a list. It is still a set and dupli-
cates are prohibited. This generic specification includes all kinds of ordering. This
may be specified by the keyword syntax: “{ordered}".

An ordered relationship may be implemented in various ways but this is normally specified
as a language-specified code generation property to select a particular implementation. An
implementation extension might substitute the data structure to hold the elements for the
generic specification “ordered”.

At implementation level, sorting may also be specified. It does not add new semantic infor-
mation but it expresses a design decision:

sorted — the elements are sorted based on their internal values. The actual sorting
rule is best specified as a separate constraint.

qualifier — see detail section. Qualifier is optional but not suppressible.
navigability

An arrow may be attached to the end of the path to indicate that navigation is sup-
ported toward the class attached to the arrow. Arrows may be attached to zero, one,
or two ends of the path. To be totally explicit arrows may be shown whenever nav-
igation is supported in a given direction. In practice it is often convenient to sup-

UML v 1.1, Notation Guide 53

Static Structure Diagrams

press some of the arrows and just show exceptional situations. See the presentation
options for details.

aggregation indicator

A hollow diamond is attached to the end of the path to indicate aggregation. The
diamond may not be attached to both ends of a line, but it need not be present at all.
The diamond is attached to the class that is the aggregate. The aggregation is
optional but not suppressible.

If the diamond is filled, then it signifies the strong form of aggregation known as
composition.

rolename

A name string near the end of the path. It indicates the role played by the class
attached to end of the path near the rolename. The rolename is optional but not sup-
pressible.

interface specifier

The name of a Classifier with the syntax
‘' classifiername

It indicates the behavior expected of an associated object by the related object. In
other words, the interface specifier specifies the behavior required to enable the
association. In this case, the actual class usually provides more functionality than
required for the particular association (since it may have other responsibilities).

The use of a rolename and interface specifier are equivalent to creating a small col-
laboration that includes just an association and two roles, whose structure is
defined by the rolename and role classifier on the original association. The original
association and classes are therefore a use of the collaboration. The original class
must be compatible with the interface specifier (which can be an interface or a
type).

If a interface specifier is omitted, then the association may be used to obtain full
access to the associated class.

changeability

If the links are changeable (can be added, deleted, and moved) then no indicator is
needed. The property {frozen} indicates that no links may be added, deleted, or
moved from an object (toward the end with the adornment) after the object is cre-
ated and initialized. The property {addOnly} indicates that additional links may be
added (presumably the multiplicity is variable) but that links may not be modified
or deleted..

visibility
Specified by a visibility indicator (‘+’, ‘#', ‘-’ or explicit keyword such as

{public}) in front of the rolename. Specifies the visibility of the association tra-

54 UML v1.1, Notation Guide

Static Structure Diagrams

versing in the direction toward the given rolename. See Section 5.7 for details of
visibility specification.
Other properties can be specified for association roles but there is no graphical syntax for them. To

specify such properties use the constraint syntax near the end of the association path (a text string
in braces). Examples of such other properties include mutability.

5.21.3 Presentation options

If there are two or more aggregations to the same aggregate, they may be drawn as a tree by merging
the aggregation end into a single segment. This requires that all of the adornments on the aggrega-
tion ends be consistent. This is purely a presentation option; there are no additional semantics to it.

Various options are possible for showing the navigation arrows on a diagram. These can vary from
time to time by user request or from diagram to diagram:

Presentation option 1: Show all arrows. The absence of an arrow indicates navigation is not
supported.

Presentation option 2: Suppress all arrows. No inference can be drawn about navigation.
This is similar to any situation in which information is suppressed from a view.

Presentation options 3: Suppress arrows for associations with navigability in both direc-
tions; show arrows only for associations with one-way navigability. In this case the two-
way navigability cannot be distinguished from no-way navigation, but the latter case is nor-
mally rare or nonexistent in practice. This is yet another example of a situation in which
some information is suppressed from a view.

5.21.4 Style guidelines

If there are multiple adornments on a single role, they are presented in the following order, reading
from the end of the path attached to the class toward the bulk of the path:

qualifier
aggregation symbol
navigation arrow

Rolenames and multiplicity should be placed near the end of the path so that they are not confused
with a different association. They may be placed on either side of the line. It is tempting to specify
that they will always be placed on a given side of the line (clockwise or counterclockwise) but this
is sometimes overridden by the need for clarity in a crowded layout. A rolename and a multiplicity
may be placed on opposite sides of the same role, or they may be placed together (for example, “*
employee”).

UML v 1.1, Notation Guide 55

Static Structure Diagrams

5.21.5 Example

Figure 21. Various adornments on association roles

+points

Contains» 34 _
Polygon <> Point
{ordered}

1

1 GraphicsBundle

-bundle| color
texture

density

5.21.6 Mapping

The adornments on the end of an association path map into properties of the corresponding role of
the Association. In general, implications cannot be drawn from the absence of an adornment (it may
simply be suppressed) but see the preceding descriptions for details.

5.22 MULTIPLICITY

5.22.1 Semantics

A multiplicity item specifies the range of allowable cardinalities that a set may assume. Multiplicity
specifications may be given for roles within associations, parts within composites, repetitions, and
other purposes. Essentially a multiplicity specification is a subset of the open set of nonnegative
integers.

5.22.2 Notation

A multiplicity specification is shown as a text string comprising a comma-separated sequence of
integer intervals, where an interval represents a (possibly infinite) range of integers, in the format:

lower-bound.. upper-bound

wherelower-boundandupper-boundare literal integer values, specifying the closed (inclu-
sive) range of integers from the lower bound to the upper bound. In addition, the star char-
acter (*) may be used for the upper bound, denoting an unlimited upper bound. In a param-

56 UML v1.1, Notation Guide

Static Structure Diagrams

eterized context (such as a template) the bounds could be expressions but they must eval-
uate to literal integer values for any actual use. Unbound expressions that do not evaluate
to literal integer values are not permitted.

If a single integer value is specified, then the integer range contains the single integer value.

If the multiplicity specification comprises a single star (*), then it denotes the unlimited
nonnegative integer range, that is, it is equivalent to *..* = 0..* (zero or more).

A multiplicity of 0..0 is meaningless as it would indicate that no instances can occur.

Expressions in some specification language can be used for multiplicities, but they must
resolve to fixed integer ranges within the model (i.e., no dynamic evaluation of expressions,
essentially the same rule on literal values as most programming language).

5.22.3 Style guidelines

Intervals should preferably be monotonically increasing. For example, “1..3,7,10" is preferable to
“7,10,1..3".

Two contiguous intervals should be combined into a single interval. For example, “0..1" is prefer-
able to “0,1".

5.22.4 Example

1.6

1..3,7..10,15,19. *
5.22.5 Mapping

A multiplicity string maps into a Multiplicity value. Duplications or other nonstandard presentation
of the string itself have no effect on the mapping. Note that Multiplicity is a value and not an object;
it cannot stand on its own but is the value of some element property.

UML v 1.1, Notation Guide 57

Static Structure Diagrams

5.23 QUALIFIER

5.23.1 Semantics

A qualifier is an attribute or list of attributes whose values serve to partition the set of objects asso-
ciated with an object across an association. The qualifiers are attributes of the association.

5.23.2 Notation

A qualifier is shown as a small rectangle attached to the end of an association path between the final
path segment and the symbol of the class that it connects to. The qualifier rectangle is part of the
association path, not part of the class. The qualifier rectangle drags with the path segments. The
qualifier is attached to the source end of the association; that is, an object of the source class together
with a value of the qualifier uniquely select a partition in the set of target class objects on the other
end of the association (i.e., every target falls into exactly one partition).

The multiplicity attached to the target role denotes the possible cardinalities of the set of target
objects selected by the pairing of a source object and a qualifier value. Common values include
“0..1” (a unique value may be selected, but every possible qualifier value does not necessarily select
a value), “1” (every possible qualifier value selects a unique target object, therefore the domain of
gualifier values must be finite), and “*" (the qualifier value is an index that partitions the target
objects into subsets).

The qualifier attributes are drawn within the qualifier box. There may be one or more attributes
shown one to a line. Qualifier attributes have the same notation as class attributes, except that initial
value expressions are not meaningful.

It is permissible (although somewhat rare) to have a qualifier on each end of a single association.
5.23.3 Presentation options

A qualifier may not be suppressed (it provides essential detail whose omission would modify the
inherent character of the relationship).

A tool may use a lighter line for qualifier rectangles than for class rectangles to distinguish them
clearly.

5.23.4 Style guidelines

The qualifier rectangle should be smaller than the attached class rectangle, although this is not
always practical.

58 UML v1.1, Notation Guide

Static Structure Diagrams

5.23.5 Example

Figure 22. Qualified associations

Bank Chessboard
account # rank:Rank
N file:File
0.1 1 ?
1
Person
Square

5.23.6 Mapping

The presence of a qualifier box on an end of an association path maps into a Qualifier on the corre-
sponding Association Role. Each attribute entry string inside the qualifier box maps into an
Attribute of the Qualifier.

5.24 ASSOCIATION CLASS

5.24.1 Semantics

An association class is an association that also has class properties (or a class that has association
properties). Even though it is drawn as an association and a class, it is really just a single model
element.

5.24.2 Notation

An association class is shown as a class symbol (rectangle) attached by a dashed line to an associ-
ation path. The name in the class symbol and the name string attached to the association path are
redundant and should be the same. The association path may have the usual adornments on either
end. The class symbol may have the usual contents. There are no adornments on the dashed line..

5.24.3 Presentation options

The class symbol may be suppressed (it provides subordinate detail whose omission does not
change the overall relationship. The association path may not be suppressed.

UML v 1.1, Notation Guide 59

Static Structure Diagrams

5.24.4 Style guidelines

The attachment point should not be near enough to either end of the path that it appears to be
attached to the end of the path or to any of the role adornments.

Note that the association path and the association class are a single model element and therefore
have a single name. The name can be shown on the path or the class symbol or both. If an associa-
tion class has only attributes but no operations or other associations, then the name may be dis-
played on the association path and omitted from the association class symbol to emphasize its “asso-
ciation nature.” If it has operations and other associations, then the name may be omitted from the
path and placed in the class rectangle to emphasize its “class nature.” In neither case are the actual
semantics different.

5.24.5 Example

Figure 23. Association class

N 1.0
employer | employee

Company Person

Job b
0SS
salary
0.1
worker |
<Manages

5.24.6 Mapping

60

An association path connecting two class boxes connected by a dashed line to another class box
maps into a single Association Class element. The name of the Association Class element is taken
from the association path or the attached class box or both (they must be consistent if both are
present). The Association properties map from the association path as specified previously. The
Class properties map from the class box as specified previously. Any constraints or properties
places on either the association path or attached class box apply to the Association Class itself; they
must not conflict.

UML v1.1, Notation Guide

Static Structure Diagrams

5.25 N-ARY ASSOCIATION

5.25.1 Semantics

An n-ary association is an association among 3 or more classes (a single class may appear more than
once). Each instance of the association is an n-tuple of values from the respective classes. A binary
association is a special case with its own notation.

Multiplicity for n-ary associations may be specified but is less obvious than binary multiplicity. The
multiplicity on a role represents the potential number of instance tuples in the association when the
other N-1 values are fixed.

An n-ary association may not contain the aggregation marker on any role.

5.25.2 Notation

An n-ary association is shown as a large diamond (that is, large compared to a terminator on a path)
with a path from the diamond to each participant class. The name of the association (if any) is shown
near the diamond. Role adornments may appear on each path as with a binary association. Multi-
plicity may be indicated, however, qualifiers and aggregation are not permitted.

An association class symbol may be attached to the diamond by a dashed line. This indicates an n-
ary association that has attributes, operations, and/or associations.

5.25.3 Style guidelines

Usually the lines are drawn from the points on the diamond or the midpoint of a side.

5.25.4 Example

This example shows the record of a team in each season with a particular goalkeeper. It is assumed
that the goalkeeper might be traded during the season and can therefore appear with different teams.

UML v 1.1, Notation Guide 61

Static Structure Diagrams

Figure 24. Ternary association that is also an association class

Year

season| U

Team & 8 Player

team goalkeeper

Record

goals for
goals against
wins

losses

ties

5.25.5 Mapping

A diamond attached to some number of class boxes by solid lines maps into an N-ary Association
whose roles are corresponding Classes. The ordering of the Classes in the Association is indetermi-
nate from the diagram. If a class box is attached to the diamond by a dashed line, then the corre-
sponding Class supplies the class properties for an N-ary Association Class.

5.26 COMPOSITION

5.26.1 Semantics

62

Composition is a form of aggregation with strong ownership and coincident lifetime of part with
the whole. The multiplicity of the aggregate end may not exceed one (it is unshared). See the seman-
tics document for further details.

The parts of a composition may include classes and associations. The meaning of an association in
a composition is that any tuple of objects connected by a single link must all belongamthe
container object.

UML v1.1, Notation Guide

Static Structure Diagrams

5.26.2 Notation

Composition may be shown by a solid filled diamond as an association role adornment. Alternately
UML provides a graphically-nested form that is more convenient for showing composition in many
cases.

Instead of using binary association paths using the composition aggregation adornment, composi-
tion may be shown by graphical nesting of the symbols of the elements for the parts within the
symbol of the element for the whole. A nested class-like element may have a multiplicity within its
composite element. The multiplicity is shown in the upper right corner of the symbol for the part;

if the multiplicity mark is omitted then the default multiplicity is many. This represents its multi-
plicity as a part within the compaosite class. A nested element may have a rolename within the com-
position; the name is shown in front of its type in the syntax:

rolename;’ classname
This represents its rolename within its composition association to the composite.

Alternately, composition is shown by a solid-filled diamond adornment on the end of an association
path attached to the element for the whole. The multiplicity may be shown in the normal way.

Note that attributes are, in effect, composition relationships between a class and the classes of its
attributes.

An association drawn entirely within a border of the composite is considered to be part of the com-
position; any objects on a single link of it must be from the same composite. An association drawn
such that its path breaks the border of the composite is not considered to be part of the composition;
any objects on a single link of it may be from the same or different composites.

Note that the notation for composition resembles the notation for collaboration. A composition may
be thought of as a collaboration in which all of the participants are parts of a single composite
object.

5.26.3 Design guidelines

This notation is applicable to “class-like” model elements: classes, types, nodes, processes, etc.

Note that a class symbol is a composition of its attributes and operations. The class symbol may be
thought of as an example of the composition nesting notation (with some special layout properties).

However, attribute notation subordinates the attributes strongly within the class, so it should be used
when the structure and identity of the attribute objects themselves is unimportant outside the class.

UML v 1.1, Notation Guide 63

Static Structure Diagrams

5.26.4 Example

Figure 25. Different ways to show composition

Window

scrollbar [2]: Slider
title: Header
body: Panel

Window

scrollbar 2 title | 1 body 1

Slider Header Panel

Window

scrollbar:Slider

title:Header

1
body:Panel

64 UML v1.1, Notation Guide

Static Structure Diagrams

5.26.5 Mapping

A class box with an attribute compartment maps into a Class with Attributes. Although attributes

may be semantically equivalent to composition on a deep level, the mapped model distinguishes the
two forms.

A solid diamond on an association path maps into the composition property on the corresponding
Association Role.

A class box with contained class boxes maps into a set of composition associations, that is, one com-
position association between the Class corresponding to the outer class box and each of the Classes
corresponding to the enclosed class boxes. The multiplicity of the composite end of each association
is 1. The multiplicity of each constituent end is 1 if not explicitly specified, otherwise it is the value
specified in the corner of the class lwspecified on an association path from the outer class box
boundary to an inner class box.

5.27 LINKS

5.27.1 Semantics

A link is a tuple (list) of object references. Most commonly, it is a pair of object references. It is an
instance of an association.

5.27.2 Notation

A binary link is shown as a path between two objects. In the case of a reflexive association, it may
involve a loop with a single object. See Association for details of paths.

A rolename may be shown at each end of the link. An association name may be shown near the path;
if present, it is underlined to indicate an instance. Links do not have instance names; they take their
identity from the objects that they relate. Multiplicityrist shown for links because they are
instances. Other association adornments (aggregation, composition, navigation) may be shown on
the link roles.

A gualifier may be shown on a link. The value of the qualifier may be shown in its box.

Implementation stereotypes.A stereotype may be attached to the link role to indicate various
kinds of implementation. The following stereotypes may be used:

«association» association (default, unnecessary to specify except for
emphasis)
«parameter» procedure parameter

UML v 1.1, Notation Guide 65

Static Structure Diagrams

«local» local variable of a procedure

«global» global variable

«self» self link (the ability of an object to send a message to
itself)

N-ary link. An n-ary link is shown as a diamond with a path to each participating object. The other
adornments on the association and the adornments on the roles have the same possibilities as the
binary link.

5.27.3 Example

Figure 26. Links

officer
Jill:Person
member
treasurer
member
downhillSkiClub:Club Joe:Person
president member
Chris:Person
officer

5.27.4 Mapping

The mapping depends on the kind of diagram:

Within a collaboration diagram, each link path maps to an AssociationRole between the Classifier-
Roles corresponding to the connected class boxes. If a hame is placed on the link path, then it is the
name of the Association that is the type of the AssociationRole. Stereotypes on the path indicate the
form of the relationship within the collaboration.

Within an object diagram, each link path maps to a Link between the Objects corresponding to the
connected class boxes. If a name is placed on the link path, then it is an instance of the given Asso-
ciation (and the role names must match or the diagram is ill formed).

66 UML v1.1, Notation Guide

Static Structure Diagrams

5.28 GENERALIZATION

5.28.1 Semantics

Generalization is the taxonomic relationship between a more general element and a more specific
element that is fully consistent with the first element and that adds additional information. It is used
for classes, packages, use cases, and other elements.

5.28.2 Notation

Generalization is shown as a solid-line path from the more specific element (such as a subclass) to

the more general element (such as a superclass), with a large hollow triangle at the end of the path
where it meets the more general element.

A generalization path may have a text label in the following format:

discriminator

wherediscriminatoris the name of a partition of the subtypes of the superclass. The sub-
class is declared to be in the given partition. The absence of a discriminator label indicates
the “empty string” discriminator which is a valid value (the “default” discriminator).

Generalization may be applied to associations as well as classes, although the notation may be
messy because of the multiple lines. An association can be shown as an association class for the
purpose of attaching generalization arrows.

5.28.3 Presentation options

A group of generalization paths for a given superclass may be shown as a tree with a shared segment
(including triangle) to the superclass, branching into multiple paths to each subclass.

If a text label is placed on a generalization triangle shared by several generalization paths to sub-

classes, the label applies to all of the paths. In other words, all of the subclasses share the given prop-
erties.

5.28.4 Details

The existence of additional subclasses in the model that are not shown on a particular diagram may
be shown using an ellipsis (. . .) in place of a subclass. (Note: this does not indicate that additional
classes may be added in the future. It indicates that additional classes exist right now but are not

being seen. This is a notational convention that information has been suppressed, not a semantic
statement)

UML v 1.1, Notation Guide 67

Static Structure Diagrams

Predefined constraints may be used to indicate semantic constraints among the subclasses. A
comma-separated list of keywords is placed in braces either near the shared triangle (if several paths
share a single triangle) or else near a dotted line that crosses all of the generalization lines involved.

The following keywords (among others) may be used:

The following constraints are predefined:
overlapping A descendent may be descended from more than one of the subclasses.
disjoint A descendent may not be descended from more than one of the subclasses.

complete All subclasses have been specified (whether or not shown). No additional
subclasses are expected.

incomplete Some subclasses have been specified but the list is known to be incom-
plete. There are additional subclasses that are not yet in the model. The is
a statement about the model itself. Note that this is not the same as the
ellipsis, which states that additional subclasses exist in the model but are
not shown on the current diagram.

Thediscriminatormust be uniqgue among the attributes and association roles of the given super-
class. Multiple occurrences of the same discriminator name are permitted and indicate that the sub-

classes belong to the same partition.

68 UML v1.1, Notation Guide

Static Structure Diagrams

The use of multiple classification dynamic classification affects the dynamic execution semantics
of the language but is not unusually apparent from a static model.

5.28.5 Example

Figure 27. Styles of displaying generalization

Shape
A Separate Target Style
Polygon Ellipse Spline
Shape
Shared Target Style

Polygon Ellipse Spline

UML v 1.1, Notation Guide 69

Static Structure Diagrams

Figure 28. Generalization with discriminators and constraints, separate target style

Vehicle

) ower venue
{overlapping} - —— — — Lol g - —_~ {overlapping}
WinglPowered MotorPowered Land Water
Vehicle Vehicle Vehicle Vehicle
Truck Sailboat

Figure 29. Generalization with shared target style

Tree

{disjoint, incomplete}
species

Birch

Oak Elm

5.28.6 Mapping

70

Each generalization path between two class boxes maps into a Generalization between the corre-

sponding Classes. A generalization tree with one arrowhead and many tails maps into a set of Gen-

eralizations, one between each Class corresponding to a class box on a tail and the single Class cor-
responding to the class box on the head. That is, a tree is semantically indistinguishable from a set

of distinct arrows; it is purely a notational convenience.

Any property string attached to a generalization arrow applies to the Generalization. A property
string attached to the head line segment on a generalization tree represents a (duplicated) property
on each of the individual Generalizations.

UML v1.1, Notation Guide

Static Structure Diagrams

The presence of an ellipsis (“...”) as a subclass node of a given class indicates that the semantic
model contains at least one subclass of the given class that is not visible on the current diagram.
Normally this indicator will be automatically maintained by an editing tool.

5.29 DEPENDENCY

5.29.1 Semantics

A dependency indicates a semantic relationship between two (or more) model elements. It relates

the model elements themselves and does not require a set of instances for its meaning. It indicates
a situation in which a change to the target element may require a change to the source element in
the dependency.

5.29.2 Notation

A dependency is shown as a dashed arrow between two model elements. The model element at the
tail of the arrow depends on the model element at the arrowhead. The arrow may be labeled with an
optional stereotype and an optional name.

The following kinds of Dependency are predefined and may be indicated with keywords:

trace — Trace: a historical connection between two elements that represent the same concept
at different levels of meaning

refine — Refinement: a historical or derivation connection between two elements with a
mapping (not necessarily complete) between them. A description of the
mapping may be attached to the dependency in a note. Various kinds of
refinement have been proposed and can be indicated by further stereo-

typing.

uses — Usage: a situation in which one element requires the presence of another element for
its correct implementation or functioning. May be stereotyped further to
indicate the exact nature of the dependency, such as calling an operation of
another class, granting permission for access, instantiating an object of
another class, etc.

bind — Binding: a binding of template parameters to actual values to create a nonparame-
terized element. See Section 5.12 for more details.

5.29.3 Presentation options

If one of the elements is a note or constraint then the arrow may be suppressed because the direction
is clear (the note or constraint is the source of the arrow).

UML v 1.1, Notation Guide 71

Static Structure Diagrams

5.29.4 Example

Figure 30. Various usage dependencies among classes

______ =~ ClassD
ClassA «friends ClassB ~ R

| /I\ «friend> T~ ~ operationZ()

| «instantiates»|

| I

I .

|

L _ _«calls» _ _ | ClassC

Figure 31. Dependencies among packages

[1]
Controller

]]

Diagram
Elements

| |
| 1
| 1
L I
- :
| | | |
v v v
Domain Graphics
Elements Core

5.29.5 Mapping

A dashed arrow maps into a Dependency between the Elements corresponding to the symbols
attached to the ends of the arrow. The stereotype and the name (if any) attached to the arrow are the
stereotype and name of the Dependency

72 UML v1.1, Notation Guide

Static Structure Diagrams

5.30 DERIVED ELEMENT

5.30.1 Semantics

A derived element is one that can be computed from another one, but that is shown for clarity or
that is included for design purposes even though it adds no semantic information.

5.30.2 Notation

A derived element is shown by placing a slash (/) in front of the name of the derived element, such
as an attribute or a rolename.

5.30.3 Style guidelines

The details of computing a derived element can be specified by a dependency with the stereotype
«derived». Usually it is convenient in the notation to suppress the dependency arrow and simply
place a constraint string near the derived element, although the arrow can be included when it is
helpful.

UML v 1.1, Notation Guide 73

Static Structure Diagrams

5.30.4 Example

Figure 32. Derived attribute and derived association

{age = currentDate - birthdatel}lr ——————

Person

birthdate

-~ lage

1

Company ks— Ul Department

employer
1 1| department
employer
WorksForDepartment
il
U]l Person
/WorksForCompany

{ Person.employer=Person.department.employer }

5.30.5 Mapping

The presence of a derived adornment (a leading “/” on the symbol name) on a symbol maps into the
setting of the “derived” property of the corresponding Element.

74

UML v1.1, Notation Guide

Use Case Diagrams

6. USE CASE DIAGRAMS

A use case diagram shows the relationship among actors and use cases within a system.

6.1 USeE CASE DIAGRAM

6.1.1 Semantics

Use case diagrams show elements from the use case model. The use case model represents func-
tionality of a system or a class as mainfested to external interactors with the system.

6.1.2 Notation

A use case diagram is a graph of actors, a set of use cases enclosed by a system boundary, commu-
nication (participation) associations between the actors and the use cases, and generalizations
among the use cases.

UML v 1.1, Notation Guide 75

Use Case Diagrams

6.1.3 Example
Figure 33. Use case diagram
Telephone Catalog
\\
/ /
place Salesperson
order
/
/ //
Customer Shipping Clerk
establish
credit
\
Supervisor
6.1.4 Mapping

A set of use case ellipses within a box with connections to actor symbols maps to a single UseCase-
Model package containing a set of UseCases and Actors with relationships among them.

76 UML v1.1, Notation Guide

Use Case Diagrams

6.2 USE CASE

6.2.1 Semantics

A use case is a coherent unit of functionality provided by a system or class as manifested by
sequences of messages exchanged among the system and one or more outside interactors (called
actorg together with actions performed by the system.

6.2.2 Notation

A use case is shown as an ellipse containing the name of the use case.

An extension poinis a location within a use case at which action sequences from other use cases
may be inserted. Each extension point must have a unique name within a use case. Extension points
may be listed in a compartment of the use case with the heaxamgsion points

6.2.3 Presentation options
The name of the use case may be placed below the ellipse.
6.2.4 Style guidelines

Use case names should follow capitalization and punctuation guidelines used for behavioral items
in the same model.

6.2.5 Mapping

A use case symbol maps to a UseCase with the given name (if any).

An extension point maps into an ExtensionPoint within the UseCase.
6.3 ACTOR

6.3.1 Semantics

An actor is a role of object or objects outside of a system that interacts directly with it as part of a
coherent work unit (a use case). An Actor element characterizes the role played by an outside
object; one physical object may play several roles and therefore be modeled by several actors.

UML v 1.1, Notation Guide 77

Use Case Diagrams

6.3.2 Notation

An actor may be shown as a class rectangle with the stereotype “actor”. The standard stereotype
icon for an actor is the “stick man” figure with the name of the actor below the figure.

6.3.3 Style guidelines

Actor names should follow capitalization and punctuation guidelines used for types and classes in
the same model.

6.3.4 Mapping

An actor symbol maps to an Actor with the given name.

6.4 USE CASE RELATIONSHIPS

6.4.1 Semantics

There are several standard relationships among use cases or between actors and use cases.

Communicates — The participation of an actor in a use case. This is the only relationship
between actors and use cases.

Extends — An extends relationships from use case A to use case B indicates that an instance
of use case B may include (subject to specific conditions specified in the extension) the
behavior specified by A. Behavior specified by several extenders of a single target use case
may occur within a single use case instance.

Uses — A uses relationship from use case A to use case B indicates that an instance of the
use case A will also include the behavior as specified by B.

6.4.2 Notation

The communication relationship between an actor and a use case is shown as a solid line between
the actor and the use case.

An “extends” relationship between use cases is shown by a generalization arrow from the use case
providing the extension to the base use case. The arrow is labeled with the stereotype «extends».

A “uses” relationship between use cases is shown by a generalization arrow from the use case doing
the use to the use case being used. The arrow is labeled with the stereotype «uses».

78 UML v1.1, Notation Guide

Use Case Diagrams

The relationship between a use case and its external interaction sequences are usually shown by an
invisible hyperlink to sequence diagrams. The relationship between a use case and its implementa-
tion may be shown as a refinement relationship to a collaboration but may also be shown as an invis-
ible hyperlink. The expectation is that a tool will support the ability to “zoom into” a use case to see

its scenarios and/or implementation as an interaction.

6.4.3 Example
Figure 34. Use case relationships

Place Order

extension points <}
additional requests

«extends» Request

Catalog

«uses» «uses»

«uses»

Supply
Customer
Data

Arrange
Payment

6.4.4 Mapping

A path between use case and/or actor symbols maps into the corresponding relationship between
the corresponding Elements, as described above.

UML v 1.1, Notation Guide 79

Sequence Diagrams

/. SEQUENCE DIAGRAMS

7.1 KINDS OF INTERACTION DIAGRAMS

A pattern of interaction among objects is shown on an interaction diagram. Interaction diagrams
come in two forms based on the same underlying information but each emphasizing a particular
aspect of it: sequence diagrams and collaboration diagrams.

A sequence diagrarshows an interaction arranged in time sequence. In particular, it shows the
objects participating in the interaction by their “lifelines” and the messages that they exchange
arranged in time sequence. It does not show the associations among the objects.

Sequence diagrams come in several slightly different formats intended for different purposes.

A sequence diagram can exist in a generic form (describes all the possible sequences) and in an
instance form (describes one actual sequence consistent with the generic form). In cases without
loops or branches, the two forms are isomorphic.

Sequence diagrams and collaboration diagrams express similar information but show it in different
ways. Sequence diagrams show the explicit sequence of messages and are better for real-time spec-
ifications and for complex scenarios. Collaboration diagrams show the relationships among objects
and are better for understanding all of the effects on a given object and for procedural design.

7.2 SEQUENCE DIAGRAM

7.2.1 Semantics

A sequence diagram represents an Interaction, which is a set of messages exchanged among objects
within a collaboration to effect a desired operation or result.

7.2.2 Notation

80

A sequence diagram has two dimensions: the vertical dimension represents time, the horizontal
dimension represents different objects. Normally time proceeds down the page. (The dimensions
may be reversed if desired.) Usually only time sequences are important but in real-time applications
the time axis could be an actual metric. There is no significance to the horizontal ordering of the
objects. Objects can be grouped into “swimlanes” on a diagram.

See subsequent sections for details of the contents of a sequence diagram.

(Note that much of this notation is drawn directly from the Object Message Sequence Chart notation
of Buschmann, Meunier, Rohnert, Sommerlad, and Stal, which is itself derived with modifications
from the Message Sequence Chart notation.)

UML v1.1, Notation Guide

Sequence Diagrams

7.2.3 Presentation options

Note that the horizontal ordering of the lifelines is arbitrary. Often call arrows are arranged to pro-
ceed in one direction across the page, but this is not always possible and the ordering does not

convey information.

The axes can be interchanged, so that time proceeds horizontally to the right and different objects
are shown as horizontal lines.

Various labels (such as timing marks, descriptions of actions during an activation, and so one) can
be shown either in the margin or near the transitions or activations that they label.

7.2.4 Example

Figure 35. Simple sequence diagram with concurrent objects

caller exchange receiver
lift receiver
a
{b-a<1sec.}
dial tone
b
{c-b<10sec.} S
dial digit
c
The call is d
routed through “
the network. d' i
{d' - d< 5 sec.} ringing tone phone rings
answer phone
_ _ stop tone stop ringing
At this point
the parties
can talk. L | i

UML v 1.1, Notation Guide 81

Sequence Diagrams

Figure 36. Sequence diagram with focus of control, conditional, recursion, creation, destruction

i 0b3:C3 ob4:C4

| op0 | |
| |
[x>0] foo(x): L
0b2:C2
[x<0] bardl() : \
doit(z) | \\
doit(w) N
T
|)
o Jr _____ W/ : /
/
| K [/
- 1/
more() | [
| |
> |
| |
N | |
| |
7.2.5 Mapping

(This section summarizes the mapping for the sequence diagram and the elements within it, some
of which are described in subsequent sections.)

82 UML v1.1, Notation Guide

Sequence Diagrams

A sequence diagram maps into an Interaction and an underlying Collaboration. Each object box
with its lifeline maps into a ClassifierRole; the name field maps into the ClassifierRole name and
the type field maps into thigpeassociation from the role to the Classifier with the given name. The
associations among roles are not shown on the sequence diagram; they must be obtained in the
model from a complementary collaboration diagram or other means. A message arrow maps into a
Message between the ClassifierRoles corresponding to the two lifelines that the arrow connects;
unless the correct AssociationRole can be determined from a complementary collaboration diagram
or other means, the Message must be attached to a dummy AssociationRole implied between the
two ClassifierRoles for lack of complete information. A timing label placed on the level of an arrow
endpoint maps into the name of the corresponding Message. A constraint placed on the diagram
maps into a Constraint on the entire Interaction.

An object symbol placed within the frame of the diagram maps into a CreateAction attached to the
Message corresponding to the incoming arrow. If an object termination symbol (“X”) is the target
of an arrow, it maps into a DestroyAction attached to the Message corresponding to the arrow; oth-
erwise it maps into a TerminateAction

On a diagram with concurrent objectqradecessoassociation is established between Messages
corresponding to successive arrows in the vertical sequence. In case of concurrent arrows, the map-
ping to apredecessosequence may be ambiguous and may require additional information.

On a procedural sequence diagram (one with focus of control and calls) subsequent arrows on the
same lifeline map into Messages obeyingphetlecessoassociation. An arrow to the head of a
focus of control region establishes a nested activation; it maps into a Message (synchronous, acti-
vation) with associated CallAction (holding the arguments and referencing the target Operation)
between the ClassifierRoles corresponding to the lifelines. All arrows departing the nested activa-
tion map into Messages with antivationAssociation to the Message corresponding to the arrow

at the head of the activation. A return arrow departing the end of the activation maps into a Message
(synchronous, reply) with aactivationAssociation to the Message corresponding to the arrow at

the head of the activation angeedecessoassociation to the previous message within the same
activation. A return must be the final message within a predecessor chain; it is not the predecessor
of any message. Any guard conditions or iteration conditions attached to a message arrow become
recurrencevalues of the Message. The operation name is used to select the target Operation with
the given name. The operation arguments becmementExpressions on the Action.

7.3 OBJECT LIFELINE

7.3.1 Semantics

A Role is a slot for an object within a collaboration that describes the type of object that may play
the role and describes its relationships to other Roles. Within a sequence diagram the existence and
duration of the object in a role is shown, but the relationships among the roles is not shown. There
are ClassifierRoles and AssociationRoles.

UML v 1.1, Notation Guide 83

Sequence Diagrams

7.3.2 Notation

An object role is shown as a vertical dashed line called the “lifeline”. The lifeline represents the
existence of the object at a particular time. If the object is created or destroyed during the period of
time shown on the diagram, then its lifeline starts or stops at the appropriate point; otherwise it goes
from the top to the bottom of the diagram. An object symbol is drawn at the head of the lifeline; if
the object is created during the diagram, then the message that creates it is drawn with its arrowhead
on the object symbol. If the object is destroyed during the diagram, then its destruction is marked
by a large “X”, either at the message that causes the destruction or (in the case of self-destruction)
at the final return message from the destroyed object. An object that exists when the transaction
starts is shown at the top of the diagram (above the first arrow). An object that exists when the trans-
action finishes has its lifeline continue beyond the final arrow.

The lifeline may split into two or more concurrent lifelines to show conditionality. Each separate
track corresponds to a conditional branch in the message flow. The lifelines may merge together at
some subsequent point.

7.3.3 Example

See Figure 36.

7.3.4 Mapping

See Section 7.2.5.

7.4 ACTIVATION

7.4.1 Semantics

An activation (focus of control) shows the period during which an object is performing an action
either directly or through a subordinate procedure. It represents both the duration of the action in
time and the control relationship between the activation and its callers (stack frame).

7.4.2 Notation

84

An activation is shown as a tall thin rectangle whose top is aligned with its initiation time and whose
bottom is aligned with its completion time. The action being performed may be labeled in text next
to the activation symbol or in the left margin, depending on style; alternately the incoming message
may indicate the action, in which case it may be omitted on the activation itself. In procedural flow
of control, the top of the activation symbol is at the tip of an incoming message (the one that initiates
the action) and the base of the symbol is at the tail of a return message.

UML v1.1, Notation Guide

Sequence Diagrams

In the case of concurrent objects each with their own threads of control, an activation shows the
duration when each object is performing an operation; operations by other objects are not relevant.
If the distinction between direct computation and indirect computation (by a nested procedure) is
unimportant, the entire lifeline may be shown as an activation.

In the case of procedural code, an activation shows the duration during which a procedure is active
in the object or a subordinate procedure is active, possibly in some other object. In other words, all
of the active nested procedure activations may be seen at a given time. In the case of a recursive call
to an object with an existing activation, the second activation symbol is drawn slightly to the right

of the first one, so that they appear to “stack up” visually. (Recursive calls may be nested to an arbi-
trary depth.)

7.4.3 Example
See Figure 36.
7.4.4 Mapping

See Section 7.2.5.

7.5 MESSAGE

7.5.1 Semantics

A message is a communication between objects that conveys information with the expectation that
action will ensue. The receipt of a message is one kind of event.

7.5.2 Notation

A message is shown as a horizontal solid arrow from the lifeline of one object to the lifeline of
another object. In case of a message from an object to itself, the arrow may start and finish on the
same object symbol. The arrow is labeled with the name of the message (operation or signal) and
its argument values. The arrow may also be labeled with a sequence number to show the sequence
of the message in the overall interaction. Sequence numbers are often omitted in sequence dia-
grams, in which the physical location of the arrow shows the relative sequences, but they are nec-
essary in collaboration diagrams. Sequence numbers are useful on both kinds of diagrams for iden-
tifying concurrent threads of control. A message may also be labeled with a guard condition.

UML v 1.1, Notation Guide 85

Sequence Diagrams

7.5.3 Presentation options

Variation: Asynchronous. An asynchronous message is drawn with a half-arrowhead (one with only
one wing instead of two).

Variation: Call. A procedure call is drawn as a full arrowhead. A return is shown as a dashed arrow.

Variation: In a procedural flow of control, the return arrow may be omitted (it is implicit at the end

of an activation). It is assumed that every call has a paired return after any subordinate messages;
the return value can be shown on the initial message line. For nonprocedural flow of control
(including parallel processing and asynchronous messages) returns should be shown explicitly.

Variation: In a concurrent system, a full arrowhead shows the yielding of a thread of control (wait
semantics) and a half arrowhead shows the sending of a message without yielding control (no-wait
semantics).

Variation: Normally message arrows are drawn horizontally. This indicates the duration required to
send the message is “atomic”, that is, it is brief compared to the granularity of the interaction and
that nothing else can “happen” during the message transmission. This is the correct assumption
within many computers. If the message requires some time to arrive, during which something else
can occur (such as a message in the opposite direction) then the message arrow may be slanted
downward so that the arrowhead is below the arrow tail.

Variation: Branching. A branch is shown by multiple arrows leaving a single point, each labeled by
a guard condition. Depending on whether the guard conditions are mutually exclusive, the construct
may represent conditionality or concurrency.

Variation: Iteration. A connected set of messages may be enclosed and marked as an iteration. For
a scenario, the iteration indicates that the set of messages can occur multiple times. For a procedure,
the continuation condition for the iteration may be specified at the bottom of the iteration. If there

is concurrency, then some messages in the diagram may be part of the iteration and others may be
single execution. It is desirable to arrange a diagram so that the messages in the iteration can be
enclosed together easily.

Variation: A lifeline may subsume an entire set of objects on a diagram representing a high-level
view.

Variation: A distinction may be made between a period during which an object has a live activation
and a period in which the activation is actually computing. The former (during which it has control

information on a stack but during which control resides in something that it called) is shown with

the ordinary double line; the latter (during which it is the top item on the stack) may be distinguished
by shading the region.

7.5.4 Mapping

See Section 7.2.5.

86 UML v1.1, Notation Guide

Sequence Diagrams

7.6 TRANSITION TIMES

7.6.1 Semantics

A message may have a sending time and a receiving time. These are formal names that may be used
within constraint expressions. The two may be the same (if the message is considered atomic) or
different (if its delivery is nonatomic).

7.6.2 Notation

A transition instance (such as a message in a sequence diagram or a collaboration diagram or a tran-
sition in a state machine) may be given a name. The name represents the time at which a message
is sent (example: A). In cases where the delivery of the message in not instantaneous, the time at
which the message is received is indicated by the transition name with a prime sign appended
(example: A"). The name may be shown in the left margin aligned with the arrow (on a sequence
diagram) or near the tail of the message flow arrow (on a collaboration diagram). This name may
be used in constraint expressions to designate the time the message was sent. If the message line is
slanted, then the primed-name indicates the time at which the message is received.

Constraints may be specified by placing Boolean expressions in braces on the sequence diagram.

7.6.3 Example
See Figure 35.
7.6.4 Mapping

See Section 7.2.5.

UML v 1.1, Notation Guide 87

Collaboration Diagrams

8. COLLABORATION DIAGRAMS

A collaboration diagram shows an interaction organized around the objects in the interaction and
their links to each other. Unlike a sequence diagram, a collaboration diagram shows the relation-
ships among the object roles. On the other hand, a collaboration diagram does not show time as a
separate dimension, so the sequence of messages and the concurrent threads must be determined
using sequence numbers.

8.1 COLLABORATION

8.1.1 Semantics

Behavior is implemented by sets of objects that exchange messages within an overall interaction to
accomplish a purpose. To understand the mechanisms used in a design, it is important to see only
the objects and the messages involved in accomplishing a purpose or a related set of purposes, pro-
jected from the larger system of which they are part for other purposes. Such a static construct is
called acollaboration.

A collaboration is a set of participants and relationships that are meaningful for a given set of pur-
poses. The identification of participants and their relationships does not have global meaning.

A collaboration may be attached to an operation or a use case to describe the context in which their
behavior occurs. The actual behavior may be specified in interactions, such as sequence diagrams
or collaboration diagrams. A collaboration may also be attached to a class to define the class’s static
structure.

A parameterized collaboration represents a design construct that can be used repeatedly in different
designs. The participants in the collaboration, including the classes and relationships, can be param-
eters of the generic collaboration. The parameters are bound to particular model elements in each
instantiation of generic collaboration. Such a parameterized collaboration can capture the structure
of adesign patterifnote that a design pattern involves more than structural aspects). Whereas most
collaborations can be anonymous because they are attached to a named entity, patterns are free
standing design constructs that must have names.

A collaboration may be expressed at different levels of granularity. A coarse-grained collaboration
may be refined to produce another collaboration that has a finer granularity.

8.1.2 Notation

88

The description of behavior involves two aspects: the structural description of its participants and
the behavioral description of its execution. The two aspects are often described together on a single
diagram but at times it is useful to describe the structural and behavioral aspects separately. The
structure of objects playing roles in a behavior and their relationships is caldidlmration. A
collaboration shows the context in which interaction occurs. The dynamic behavior of the message

UML v1.1, Notation Guide

Collaboration Diagrams

sequences exchanged among objects to accomplish a specific purpose is daliedheton. A
collaboration is shown by a collaboration diagram without messages. By adding messages, an inter-
action is shown. Different sets of messages may be applied to the same collaboration to yield dif-
ferent interactions.

8.2 COLLABORATION DIAGRAM

8.2.1 Semantics

A collaboration diagram represents a Collaboration, which is a set of objects related in a particular
context, and an Interaction, which is a set of messages exchanged among the objects within a col-
laboration to effect a desired operation or result.

8.2.2 Notation

A collaboration diagram is a graph of references to objects and links with message flows attached
to its links. The diagram shows the objects relevant to the performance of an operation, including
objects indirectly affected or accessed during the operation. The collaboration used to describe an
operation includes its arguments and local variables created during its execution as well as ordinary
associations. Objects created during the execution may be designated as {new}; objects destroyed
during the execution maybe designated as {destroyed}; objects created during the execution and
then destroyed may be designated as {transient}. These changes in life state are derivable from the
detailed messages sent among the objects; the are provided as notational conveniences.

The diagram also shows the links among the objects, including transient links representing proce-
dure arguments, local variables, aelflinks. Because collaboration diagrams are often used to
help design procedures, they typically show navigability using arrowheads on links. (An arrowhead
on a line between object boxes indicates a link with one-way navigability. An arrow next to a line
indicates a message flowing in the given direction over the link. Obviously a message arrow cannot
flow backwards over a one-way link.)

Individual attribute values are usually not shown explicitly. If messages must be sent to attribute
values, the attributes should be modeled using associations instead.

The internal messages that implement a method are numbered starting with number 1. For a proce-
dural flow of control the subsequent message numbers are nested in accordance with call nesting.
For a nonprocedural sequence of messages exchanged among concurrent objects all the sequence
numbers are at the same level (that is, they are not nested).

A collaboration diagram without messages showsctir@extin which interactions can occur,

without showing any specific interactions. It might be used to show the context for a single opera-
tion or even for all of the operations of a class or group of classes.

UML v 1.1, Notation Guide 89

Collaboration Diagrams

8.2.3 Example

Figure 37. Collaboration diagram

redisplay() —» window _
:Controller Window

«parameter»window

‘1: displayPositions(window) f 1.1.3.1: add(self)

wire contents {new}
. . local»line
1.1*[i:=1..n]: drawSegment(i ire Wi « q
[] g ()(wire: Wire 175 croater0.r1) —m Line {new}
«self ‘ 1 ‘ ‘ - ‘ 1.1.3: display(window) —»
i- i
‘1.1.1a: r0 := position() ‘ 1.1.1b: r1:=position()

left: Bead right: Bead

8.2.4 Mapping

A collaboration diagram maps to a Collaboration with a superimposed Interaction.

8.3 PATTERN STRUCTURE

8.3.1 Semantics

90

A collaboration can be used to specify the implementation of design constructs. For this purpose it
is necessary to specify its context and interactions. It is also possible to view a collaboration as a
single entity from the “outside.” For example, this could be used to identify the presence of design
patterns within a system design. A pattern is a parameterized collaboration; in each use of the pat-
tern, actual classes are substituted for the parameters in the pattern definition.

Note thatpatternsas defined ibesign Patterndy Gamma, Helm, Johnson, and Vlissides include
much more than structural descriptions. UML describes the structural aspects and some behavioral

UML v1.1, Notation Guide

Collaboration Diagrams

aspects of design patterns, but UML notation does not include other important aspects of patterns,
such as usage trade-offs or examples. These must be expressed in text or tables.

8.3.2 Notation

A use of a collaboration is shown as a dashed ellipse containing the name of the collaboration. A
dashed line is drawn from the collaboration symbol to each of the objects or classes (depending on
whether it appears within an object diagram or a class diagram) that participate in the collaboration.
Each line is labeled by thele of the participant. The roles correspond to the names of elements
within the context for the collaboration; such names in the collaboration are treated as parameters
that are bound to specify elements on each occurrence of the pattern within a model. Therefore a
collaboration symbol can shown the use of a design pattern together with the actual classes that
occur in that particular use of the pattern.

Figure 38. Use of a collaboration

CallQueue subject SlidingBarlcon
\ handler
\ -

queue: List of Call \ - d reading: Real
source: Object > T~ 7 color: Color
waitAlarm: Alarm / N range: Interval
capacity: Integer \ Observer \

N /

~ — -
- — =

handler.reading = length (subject.queue)
range = (0 .. capacity)

8.3.3 Mapping

A collaboration usage symbol maps into a Collaboration. For each class symbol attached by an
arrow to the pattern occurrence symbol, the corresponding Class is bound to the template parameter
that is thaypeassociation target of the ClassifierRole in the Pattern with the name equal to the name
on the arrow.

UML v 1.1, Notation Guide 91

Collaboration Diagrams

8.4 COLLABORATION CONTENTS

The contents of a collaboration are modeling elements that interact within a given context for a par-
ticular purpose, such as performing an operation or a use case; it is a “society of objects”. A collab-
oration is a fragment of a larger complete model that is intended for a particular purpose.

8.4.1 Semantics

A collaborationshows one or more roles together with their contents, associations, and neighbor
roles, plus additional relationships and classes as needed. To use a collaboration, each role must be
bound to an actual class that can support the operations required of the role.

8.4.2 Notation

92

A collaboration is shown as a graph of class references and association references. Each reference
is arole of the collaboration; that is, each entity is playing a role within the context of the collabo-
ration, a role that is only part of its full description. The names of the objects represent their roles
within the collaboration. A collaboration is a prototype; in each use of the collaboration the roles
are bound to actual objects. There are several ways to show the diagram:

Methods. If the collaboration shows the implementation of an operation (a method), then it is usu-
ally drawn as a separate collaboration diagram including context to which message flow is added
to obtain an interaction. The collaboration for the operation includes the target object of the opera-
tion and any other objects that it calls on, directly or indirectly, to implement the operation. The col-
laboration includes the objects present before the operation, the objects present after the operation
(these may be the same or mostly the same as the ones before), and objects that exist only during
the operation; these may be marked as «new», «destroyed», and «transient». Only objects involved
in the operation implementation need be shown. To show the implementation of an operation, mes-
sage flows are superimposed on the links between objects in the collaboration; each flow shows a
step within the method for the operation (see Section 8.9).

ClassesA collaboration is normally defined for a single operation. By taking the union of all of the
collaborations for all of the operations of a class, an overall collaboration for the entire class can be
shown. This collaboration shows all of the context for the implementation of the class.

In both cases the usual assumption is that objects and classes not shown on the collaboration are not
affected by the operation. (It is not always safe to assume that all of the objects on a collaboration
diagramare used by the operation, however.)

Different collaborations may be devised for the same class for different purposes. Each collabora-
tion may show a somewhat different subset of attributes, operators, and related objects that are rel-
evant to each purpose. Inasmuch as actual operations often fall into related groups, each collabora-
tion might specify a consistent view shared by several operations that is somewhat different from
the view needed by other operations on the same type. Similarly, the model of types in a business

UML v1.1, Notation Guide

Collaboration Diagrams

organization can often be divided into several collaborations, each from the point of view of a par-
ticular stakeholder.

8.5 INTERACTIONS

A collaboration of objects interacts to accomplish a purpose (such as performing an operation) by
exchanging messages. The messages may include both signals and calls, as well as more implicit
interaction through conditions and time events. A specific pattern of message exchanges to accom-
plish a specific purpose is called iateraction.

8.5.1 Semantics

An interactionis a behavioral specification that comprises a sequence of message exchanges among
a set of objects within a collaboration to accomplish a specific purpose, such as the implementation
of an operation. To specify an interaction, it is first necessary to specify a collaboration, that is, the
establish the objects that interact and their relationships. Then the possible interaction sequences are
specified. These can be specified in a single description containing conditionals (branches or con-
ditional signals), or they can be specified by supplying multiple descriptions, each describing a par-
ticular path through the possible execution paths.

8.5.2 Notation

Interactions are shown as sequence diagrams or as collaboration diagrams. Both diagram formats
show the execution of collaborations. However, sequence diagrams only show the participating
objects and do not show their relationships to other objects or their attributes, therefore they do not
fully show the context aspect of a collaboration. Sequence diagrams do show the behavioral aspect
of collaborations explicitly, including the time sequence of message and explicit representation of
method activations. Sequence diagrams are described in Chapter 7. Collaboration diagrams show
the full context of an interaction, including the objects and their relationships relevant to a particular
interaction, so they are often better for design purposes. Collaboration diagrams are described in the
following sections.

8.5.3 Example

See Collaboration Diagram section for a collaboration underlying an interaction.

UML v 1.1, Notation Guide 93

Collaboration Diagrams

8.6 COLLABORATION ROLES

8.6.1 Semantics

A Role is a slot for an object within a collaboration that describes the type of object that may play
the role and describes its relationships to other Roles. There are ClassifierRoles and Association-
Roles.

8.6.2 Notation

A collaboration role is shown using the notation for an object or a link. Keep in mind, however, that
in the context of a collaboration these represent roledihdito actual objects or links when the
collaboration is used, not actual objects and links.

A class role is shown as a class rectangle symbol. Normally only the name compartment is shown.
The name compartment contains the string:

| | - assfi

The classname can include a full pathname of enclosing packages, if necessary (a tool will normally
permit shortened pathnames to be used when they are unambiguous). The package names precede
the classname and are separated by double colons. For example:

display_window: WindowingSystem::GraphicWindows::Window
A stereotype for the class may be shown textually (in guillemets above the name string) or as an
icon in the upper right corner. The stereotype for an object must match the stereotype for its class.

A class role representing a set of objects includes a multiplicity indicator (such as “*") in the upper
right corner of the class box.

An association role is shown as a path between two class role symbols. If the name of the corre-
sponding association is included it is underlined. Rolenames are not underlined. Even in absence of
underlining a line connecting class roles is an association role.

If one end of the association role path is connected to a multiple class role, then a multiplicity indi-
cator may be placed on that end to emphasize the multiplicity.

8.6.3 Presentation options

The name of the object may be omitted. In this case the colon should be kept with the class name.
This represents an anonymous object of the given class given identity by its relationships.

The class of the object may be suppressed (together with the colon).

94 UML v1.1, Notation Guide

Collaboration Diagrams

8.6.4 Example

See Figure 37.

8.6.5 Mapping

The object symbol in a collaboration diagram maps to a ClassifierRole whose name matches the
objectpart of the name string; the role hatype Association to a Classifier whose hame matches
thetypepart of the name string.

8.7 MULTIOBJECT

8.7.1 Semantics

A multiobject represents a set of objects on the “many” end of an association. This is used to show
operations that address the entire set, rather than a single object in it. The underlying static model
is unaffected by this grouping. This corresponds to an association with multiplicity “many” used to
access a set of associated objects.

8.7.2 Notation

A multiobject is shown as two rectangles in which the top rectangle is shifted slightly vertically and
horizontally to suggest a stack of rectangles. A message arrow to the multiobject symbol indicates
a message to the set of objects, for example, a selection operation to find an individual object.

To perform an operation on each object in a set of associated objects requires two messages: an iter-
ation to the multiobject to extract links to the individual objects, then a message sent to each indi-
vidual object using the (temporary) link. This may be elided on a diagram by combining the mes-
sages into a single message that includes an iteration and an application to each individual object;
the target rolename takes a “many” indicator (*) to show that many individual links are implied.
Although this may be written as a single message, in the underlying model (and in any actual code)
it requires the two layers of structure (iteration to find links, message using each link) mentioned
previously.

An object from the set is shown as a normal object symbol, but it may be attached to the multiobject
symbol using a composition link to indicate that it is part of the set. A message arrow to the simple
object symbol indicates a message to an individual object.

Typically a selection message to a multiobject returns a reference to an individual object, to which
the original sender then sends a message.

UML v 1.1, Notation Guide 95

Collaboration Diagrams

8.7.3 Example

Figure 39. Multiobject

) servers
client -Server

—
1: aServer:=find(specs)

aServer {local}

:Server

—
2: process(request)

8.7.4 Mapping

A multiobject symbol maps to a ClassifierRole with multiplicity “many” (or whatever is explicitly
specified). In other respects it maps the same as an object symbol.

8.8 ACTIVE OBJECT

An active object is one that owns a thread of control and may initiate control activity. A passive
object is one that holds data but that does not initiate control. However, a passive object may send
messages in the process of processing a request that it has received. In a collaboration diagram, a
ClassifierRole that is an active class represents the active objects that occur during execution.

8.8.1 Semantics

An active object is an object that owns a thread of control. Processes and tasks are traditional kinds
of active objects.

8.8.2 Notation

A role for an active object is shown as an object symbol with a heavy border. Frequently active
object roles are shown as composites with embedded parts.

The property keyworélactive} may also be used to indicate an active object.

96 UML v1.1, Notation Guide

Collaboration Diagrams

8.8.3 Example
Figure 40. Composite active object
{local} job %{)
job
:Factory Manager
:Factory
Scheduler
|/ 1: start(job)
Naz2,B2/2: completed(job)
:Factory
JobMar.
} B2: completed N A2: completed
| 1/B1: start(ob) ' 1/ A1: start(job)
:Robot :Oven
8.8.4 Mapping

An active object symbol maps as an object symbol does, with the addition thatitlegroperty
is set.

A nested object symbol (active or not) maps into a Classifierrole that has a composition association
to the roles corresponding to its contents, as described under Compaosition.

UML v 1.1, Notation Guide 97

Collaboration Diagrams

8.9 MESSAGE FLOWS

8.9.1 Semantics

A message flovs the sending of a message from one object to another. The implementation of a
message may take various forms, such as a procedure call, the sending of a signal between active
threads, the explicit raising of events, and so on.

8.9.2 Notation

A message flow is shown as a labeled arrow placed near a link. The meaning is that the link is used
to transport or otherwise implement the delivery of the message to the target object. The arrow
points along the link in the direction of the target object (the one that receives the message).

Control flow type. The following arrowhead variations may be used to show different kinds of
messages:

filled solid arrowhead — ™
procedure call or other nested flow of control. The entire nested sequence
is completed before the outer level sequence resumes. May be used with
ordinary procedure calls. May also be used with concurrently active
objects when one of them sends a signal and waits for a nested sequence
of behavior to complete.

stick arrowhead ——
Flat flow of control. Each arrow shows the progression to the next step in
sequence. Normally all of the messages are asynchronous.

half stick arrowhead —
asynchronous flow of control. Used instead of the stick arrowhead to
explicitly show an asynchronous message between two objects in a proce-
dural sequence.

other variations
other kinds of control may be shown, such as “balking” or “time-out”, but
these are treated as extensions to the UML core

Message labelThe label has the following syntax:
predecessor guard-conditi@equence-expressiogturn-value:= message-name argument-list

The label indicates the message sent, its arguments and return values, and the sequencing of the
message within the larger interaction, including call nesting, iteration, branching, concurrency, and
synchronization.

98 UML v1.1, Notation Guide

Collaboration Diagrams

PredecessorThe predecessor is a comma-separated list of sequence numbers followed by a slash
(1)
sequence-numbeéf . ../

The clause is omitted if the list is empty.

Each sequence-number is a sequence-expression without any recurrence terms. It must match the
sequence number of another message.

The meaning is that the message flow is not enabled until all of the message flows whose sequence
numbers are listed have occurred (a thread can go beyond the required message flow and the guard
remains satisfied). Therefore the guard condition represents a synchronization of threads.

Note that the message corresponding to the numerically preceding sequence number is an implicit
predecessor and need not be explicitly listed. All of the sequence numbers with the same prefix form
a sequence; the numerical predecessor is the one in which the final term is one less. That is, number
3.1.4.5 is the predecessor of 3.1.4.6.

Sequence expressioi.he sequence-expression is a dot-separated list of sequence-terms followed
by a colon (":"). Each term represents a level of procedural nesting within the overall interaction. If
all the control is concurrent, then nesting does not occur. Each sequence-term has the following
syntax:

[integer| name] [recurrence]

The integer represents the sequential order of the message within the next higher level of procedural
calling. Messages that differ in one integer term are sequentially related at that level of nesting.
Example: Message 3.1.4 follows message 3.1.3 within activation 3.1.

The name represents a concurrent thread of control. Messages that differ in the final name are con-
current at that level of nesting. Example: message 3.1a and message 3.1b are concurrent within acti-
vation 3.1. All threads of control are equal within the nesting depth.

The recurrence represents conditional or iterative execution. This represents zero or more messages
that are executed depending on the conditions involved. The choices are:

“* [iteration-clause T An iteration
‘I condition-clause ' A branch

An iteration represents a sequence of messages at the given nesting depth. The iteration clause may
be omitted (in which case the iteration conditions are unspecified). The iteration-clause is meant to
be expressed in pseudocode or an actual programming language; UML does not prescribe its
format. An example would be: *[i := 1..n].

A condition represents a message that whose execution is contingent on the truth of the condition
clause. The condition-clause is meant to be expressed in pseudocode or an actual programming lan-
guage; UML does not prescribe its format. An example would be: [x >y].

UML v 1.1, Notation Guide 99

Collaboration Diagrams

Note that a branch is notated the same as an iteration without a star; one might think of it as an iter-
ation restricted to a single occurrence.

The iteration notation assumes that the messages in the iteration will be executed sequentially.
There is also the possibility of executing them concurrently. The notation for this is to follow the
star by a double vertical line (for parallelism): *||.

Note that in a nested control structure, the recurrence is not repeated at inner levels. Each level of
structure specifies its own iteration within the enclosing context.

Signature. A signature is a string that indicates the name, the arguments, and the return value of an
operation, message, or signal. These have the following properties:

Return-value. This is a list of names that designates the values returned by the message within the
subsequent execution of the overall interaction. These identifiers can be used as arguments to sub-
sequent messages. If the message does not return a value, then the return value and the assignment
operator are omitted.

Message-nameThis is the name of the event raised in the target object (which is often the event
of requesting an operation to be performed). It may be implemented in variou®negbwhich

is an operation call. If it is implemented as a procedure call, then this is the name of the operation
and the operation must be defined on the class of the receiver or inherited by it. In other cases it may
be the name of an event that is raised on the receiving object. In normal practice with procedural
overloading, both the message name and the argument list types are required to identify a particular
operation.

Argument list. This is a comma-separated list of arguments (actual parameters) enclosed in paren-
theses. The parentheses can be used even if the list is empty. Each argument is an expression in
pseudocode or an appropriate programming language (UML does not prescribe). The expressions
may use return values of previous messages (in the same scope) and navigation expressions starting
from the source object (that is, attributes of it and links from it and paths reachable from them).

8.9.3 Presentation options

Instead of text expressions for arguments and return values, data tokens may be shown near a mes-
sage. A token is a small circle labeled with the argument expression or return value name; it has a
small arrow on it that points along the message (for an argument) or opposite the message (for a
return value). Tokens represent arguments and return values. The choice of text syntax or tokens is
a presentation option.

The syntax of messages may instead be expressed in the syntax of a programming language, such
as C++ or Smalltalk. All of the expressions on a single diagram should use the same syntax, how-
ever.

100 UML v1.1, Notation Guide

Collaboration Diagrams

8.9.4 Example

See Figure 37 for examples within a diagram.

Samples of control message label syntax:

2: display (x, y) simple message

1.3.1: p:= find(specs) nested call with return value

[x < 0] 4: invert (x, color) conditional message

A3,B4/ C3.1*: update () synchronization with other threads, iteration
8.9.5 Mapping

A message flow symbol maps into a Message between the ClassifierRoles corresponding to the
boxes connected by the association path bearing the message flow symbol. The control flow type
sets the corresponding Message properties.

The predecessor expression together with the sequence expression deterpretettessoand
activation(caller) associations between the Message and other messages. The predecessors of the
Message are the messages corresponding to the sequence numbers in the predecessor list as well as
the message corresponding to the immediate preceding sequence number as the Message (i.e., 1.2.2
is the one preceding 1.2.3). The caller of the Message is the Message whose sequence number is
truncated by one position (i.e., 1.2 is the caller of 1.2.3).

The return value maps into a message from the called object to the caller with dmetatianits
predecessois the final message within the procedurealtvationis the message that called the
procedure.

The recurrence expression, the iteration clause, and the condition clause determine the recurrence
value in the Message.

The operation name and the form of the signature determine the Operation attached to the CallAc-
tion associated with the Message.

The arguments of the signature determine the arguments associated with the CallAction.

In a procedural interaction, each message flow symbol also maps into a second Message with the
properties (synchronous, reply) representing the return flow. This MessageduivaionAsso-

ciation to the original call Message. Its associated Action is a ReturnAction bearing the return
values as arguments (if any).

UML v 1.1, Notation Guide 101

Collaboration Diagrams

8.10 CREATION/DESTRUCTION MARKERS

8.10.1 Semantics

During the execution of an interaction some objects and links are created and some are destroyed.
The creation and destruction of elements can be marked.

8.10.2 Notation

An object or link that is created during an interaction has the keywvesvels a constraint. An object

or link that is destroyed during an interaction has the keydesttoyedas a constraint. The key-

word may be used even if the element has no name. Both keywords may be used together, but the
keywordtransientmay be used in place néw destroyed.

8.10.3 Presentation options

Tools may use other graphic markers in addition to or in place of the keywords. For example, each
kind of lifetime might be shown in a different color. A tool may also use animation to show the cre-
ation and destruction of elements and the state of the system at various times.

8.10.4 Example
See Figure 37.

8.10.5 Mapping

Creation or destruction indicators map into CreateActions or DestroyActions actions on the target
ClassifierRoles or into TerminateActions. The actions correspond to messages that cause the
changes. These status indicators are merely summaries of the total actions.

102 UML v1.1, Notation Guide

Statechart Diagrams

9. STATECHART DIAGRAMS

A statechart diagram shows the sequences of states that an object or an interaction goes through
during its life in response to received stimuli, together with its responses and actions.

The semantics and notation described in this chapter are substantially those of David Harel's state-
charts with modifications to make them object-oriented. His work was a major advance on the tra-
ditional flat state machines. Statechart notation also implements aspects of both Moore machines
and Mealy machines, traditional state machine models.

9.1 STATECHART DIAGRAM

9.1.1 Semantics

A state machine is a graph of states and transitions that describes the response of an object of a given
class to the receipt of outside stimuli. A state machine is attached to a class or a method

9.1.2 Notation

A statechart diagram represents a state machine. The states are represented by state symbols and the

transitions are represented by arrows connecting the state symbols. States may also contain subdi-
agrams by physical containment and tiling. .

UML v 1.1, Notation Guide 103

Statechart Diagrams

Figure 41. State diagram

Active (Timeout 1
do/ play messageJ
dial digit(n)
after (15 sec.) [incomplete]

after (15 sec.)

(DialTone) dial digit(n) iy
do/ play dial t Dialing
i | do play dial tone

) dial digit(n)[invalid] —
receiver o .
: dial digit(n)[valid]
/get dial tone (Invalid / /connect
Edle] Ldo/ play messageJ [Connecting]

Pinned Busy g connected
callee do/ play busy
callee hangs up tone

ﬁglrlgs up answers
/disconnect R Ringing

Talking callee answers [do/ play ringing

k /enable speech tone J
9.1.3 Mapping

A statechart diagram maps into a StateMachine. That StateMachine may be attached to a Class or
a Method but there is no explicit notation for this.

9.2 STATES

9.2.1 Semantics

A state is a condition during the life of an object or an interaction during which it satisfies some

condition, performs some action, or waits for some event. An object remains in a state for a finite
(non-instantaneous) time.

Actions are atomic and non-interruptible. A state may correspond to ongoing activity. Such activity
is expressed as a nested state machine. Alternately, ongoing activity may be represented by a pair

of actions, one that starts the activity on entry to the state and one that terminates the activity on exit
from the state.

104 UML v1.1, Notation Guide

Statechart Diagrams

Each subregion of a state may have initial states and final states. A transition to the enclosing state
represents a transition to the initial state. A transition to a final state represents the completion of
activity in the enclosing region; completion of activity in all concurrent regions represents comple-
tion of activity by the enclosing state and triggers a “completion of activity” event” on the enclosing
state. Completion of the outermost state of an object corresponds to its death.

9.2.2 Notation
A state is shown as a rectangle with rounded corners. It may have one or more compartments. The
compartments are all optional. They are as follows:

Name compartment. Holds the (optional) name of the state as a string. States without names are
“anonymous” and are all distinct It is undesirable to show the same named state twice in the same

diagram, however, as confusion may ensue.

Internal transition compartment. Holds a list of internal actions or activities performed in response
to events received while the object is in the state, without changing state. These have the format:

event-name argument-li$t guard-condition T/’ action-expression
Each event name or pseudo-event name may appear at most once in a single state.

The following special actions have the same form but represent reserved words that cannot be used
for event names:

‘entry’ '/’ action-expressioin atomic action performed on entry to the state
‘exit’ /" action-expressiofin atomic action performed on exit from the state

Entry and exit actions may not have arguments or guard conditions (because they are
invoked implicitly, not explicitly). However, the entry action at the top level of the state
machine for a class may have parameters that represent the arguments that it receives when

it is created.

Action expressions may use attributes and links of the owning object and parameters of
incoming transitions (if they appear on all incoming transitions).

The following keyword represents the invocation of a nested state machine:
‘do’ /' machine-naméargument-list

The machine-namenust be the name of a state machine that has an initial and final state.

If the nested machine has parameters, then the argument list must match correctly. When
this state is entered, after any entry action then execution of the nested state machine begins
with its initial state. When the nested state machine reaches its final state, then any exit
action in the current state is performed and the current state is considered completed and
may take a transition based on implicit completion of activity.

UML v 1.1, Notation Guide 105

Statechart Diagrams

9.2.3 Example

Figure 42. State

(Typing Password \

entry / set echo invisible
exit / set echo normal
character / handle character

help / display help

9.2.4 Mapping

A state symbol maps into a State. See the next section for further details on which kind of state.

The name string in the symbol maps to the name of the state. Two symbols with the same name map
into the same state. However, each state symbol with no name (or an empty name string) maps into
a distinct anonymous State.

An internal action string with the name “entry” or “exit” maps into an association: the source is the
State corresponding to the enclosing state symbol; the target is an ActionSequence that maps the
action expression; the association is the Entry action or the Exit action association.

An internal action string with the name “do” maps into the invocation of a nested state machine.

Any other internal action maps into imernal Association from the corresponding State to a Tran-
sition. The action expression maps into the ActionSequence and Guard for the Transition. The event
name and arguments map into an Event corresponding to the event name and arguments; the Tran-
sition has drigger Association to the Event

9.3 COMPOSITE STATES

9.3.1 Semantics

A state can be decomposed usamgl+elationships into concurrent substates or usingglation-
ships into mutually exclusive disjoint substates. A given state may only be refined in one of these
two ways. Its substates can may be refined in the same way or the other way.

A newly-created object starts in its initial state. The event that creates the object may be used to
trigger a transition from the initial state symbol.

106 UML v1.1, Notation Guide

Statechart Diagrams

An object that transitions to its outermost final state ceases to exist.
9.3.2 Notation

An expansion of a state shows its fine structure. In addition to the (optional) name and internal tran-
sition compartments, the state may have an additional compartment that contains a region holding
a nested diagram. For convenience and appearance, the text compartments may be shrunk horizon-
tally within the graphic region.

An expansion of a state into concurrent substates is shown by tiling the graphic region of the state
using dashed lines to divide it into subregions. Each subregion is a concurrent substate. Each sub-
region may have an optional name and must contain a nested state diagram with disjoint states. The
text compartments of the entire state are separated from the concurrent substates by a solid line.

An expansion of a state into disjoint substates is shown by showing a nested state diagram within
the graphic region.

An initial (pseudo)state is shown as a small solid filled circle. In a top-level state machine, the tran-
sition from an initial state may be labeled with the event that creates the object; otherwise it must
be unlabeled. If it is unlabeled, it represents any transition to the enclosing state. The initial transi-
tion may have an action. The initial state is a notational device; an object mayimstible a state

but must transition to an actual state.

A final (pseudo)state is shown as a circle surrounding a small solid filled circle (a bull's eye). It rep-
resents the completion of activity in the enclosing state and it triggers a transition on the enclosing
state labeled by the implicit activity completion event (usually displayed as an unlabeled transition).

9.3.3 Example

Figure 43. Sequential substates

/ Dialing \

(" start N digit) (* partialDial) [number.isvalid()]
entry/ start dial tone entry/number.append(n) @
exit/ stop dial tone -)
digit(n)

o /

UML v 1.1, Notation Guide 107

Statechart Diagrams

Figure 44. Concurrent substates

/ Taking Class \

Incomplete

O,
----------------------------------)
O

fail \
= Failed

_

9.3.4 Mapping

A state symbol maps into a State. If the symbol has no subdiagrams in it, it maps into a SimpleState;
if it is tiled by dashed lines into subregions then it maps into a CompositeState watbaheurrent
value true, otherwise it maps into a CompositeState witls@encurrentvalue false.

An initial state symbol or a final state symbol map into a Pseudostate dhitiallor final.

9.4 EVENTS

9.4.1 Semantics

An event is a noteworthy occurrence. For practical purposes in state diagrams, it is an occurrence
that may trigger a state transition. Events may be of several kinds (not necessarily mutually exclu-
sive):

a designated condition becoming true (usually described as a boolean expression). This is
a ChangeEvent. These are notated with the keywbsh followed by a boolean expres-

sion in parentheses. The event occurs whenever the value of the expression changes from
false to true. Note that this is different from a guard condition: A guard condition is evalu-

108 UML v1.1, Notation Guide

Statechart Diagrams

atedoncewhenver its event fires; if it is false then the transition does not occur and the
event is lost. Examplevhen (balance < 0).

receipt of an explicit signal from one object to another. This is a SignalEvent. One of these
is notated by the signature of the event as a trigger on a transition.

receipt of a call for an operation by an object. This is a CallEvent. These are notated by the
signature of the operation as a trigger on a transitions. There is no visual difference from a
signal event; it is assumed that the names with distinguish them.

passage of a designated period of time after a designated event (often the entry of the cur-
rent state) or the occurrence of a given date/time. This is a TimeEvent. These are notated as
time expressions as triggers on transitions. One common time expression is the passage of
time since the entry to the current state; this is notated with the kegfterdollowed by

an amount of time in parentheses. Examgifir (10 seconds).

The event declaration has scope within the package it appears in and may be used in state diagrams
for classes that have visibility inside the package. An everttiscal to a single class.

9.4.2 Notation

A signal or call event can be defined using the following format:
event-nam¢g’ comma-separated-parameter-liyt

A parameter has the format:
parameter-name’ type-expression

A signal can be declared using the «signal» keyword on a class symbol in a class diagram. The
parameters are specified as attributes. A signal can be specified as a subclass of another signal. This
indicates that an occurrence of the subevent triggers any transition that depends on the event or any
of its ancestors.

An elapsed-time event can be specified with the keywatied followed by an expression that eval-
uates (at modeling time) to an amount of time, suchatisr*(5 seconds)” oafter (10 seconds
since exit from state A)". If no starting point is indicated, then it is the time since the entry to the
current state. Other time events can be specified as conditions, sutérgslate = Jan. 1, 2000)..

A condition becoming true is shown with the keywarlden followed by a boolean expression.

This may be regarded as a continuous test for the condition until it is true, although in practice it
would only be checked on a change of values (and there are ways to determine when it must be
check). This is mapped into a ChangeEvent in the model.

Signals can be declared on a class diagram with the keyword «signal» on a rectangle symbol. These
define signal names that may be used to trigger transitions. Their parameters are shown in the
attribute compartment. They have no operations. They may appear in a generalization hierarchy.

Note that they araotreal classes and may not appear in relationships to real classes.

UML v 1.1, Notation Guide 109

Statechart Diagrams

9.4.3 Example
Figure 45. Signal declaration
«signal»
InputEvent
time
«signal»
Userlnput
device
| |
«signal» «signal»
Mouse Keyboard
Button Character
location character
«signal» «signal» «signal» «signal»
Mouse Mouse Control Graphic
Button Button Character Character
Down Up
| | |
«signal» «signal» «signal»
Space Alphanumeric Punctuation
9.4.4 Mapping

A class box with stereotype «signal» maps into a Signal; the name and parameters are given by the
name string and the attribute list of the box. Generalization arrows between signal class boxes map

into Generalization relationships between the Signal.

The usage of an event string expression in a context requiring an event maps into an implicit refer-
ence of the Event with the given name. It is an error if various uses of the same name (including any

explicit declarations) do not match.

110

UML v1.1, Notation Guide

Statechart Diagrams

9.5 SIMPLE TRANSITIONS

9.5.1 Semantics

A simple transition is a relationship between two states indicating that an object in the first state will
enter the second state and perform certain specified actions when a specified event occurs if speci-
fied conditions are satisfied. On such a change of state the transition is said to “fire”. The trigger for

a transition is the occurrence of the event labeling the transition. The event may have parameters,
which are available within actions specified on the transition or within actions initiated in the sub-
sequent state. Events are processed one at a time. If an event does not trigger any transition, it is
simply ignored. If it triggers more than one transition within the same sequential region (i.e., not in
different concurrent regions), only one will fire; the choice may be nondeterministic if a firing pri-
ority is not specified.

9.5.2 Notation

A transition is shown as a solid arrow from one stateqthgcestate) to another state (ttegget
state) labeled by @mansition string.The string has the following format:

event-signaturd’ guard-condition ‘] */ action-expression ‘~' send-clause
Theevent-signaturelescribes an event with its arguments:
event-namg’ parameter, ...")

Theguard-conditionis a Boolean expression written in terms of parameters of the triggering event
and attributes and links of the object that owns the state machine. The guard condition may also
involve tests of concurrent states of the current machine (or explicitly designated states of some
reachable object); for examplén“Statel” or hot in State2”. State names may be fully qualified

by the nested states that contain them, yielding path names of the form “Statel::State2::State3"; this
may be used in case same state name occurs in different composite state regions of the overall
machine.

Theaction-expressiors a procedural expression that is executed if and when the transition fires. It
may be written in terms of operations, attributes, and links of the owning object and the parameters
of the triggering event. The action-clause must be an atomic operation, that is, it may not be inter-
ruptible; it must be executed entirely before any other actions are considered. The transition may
contain more than one action clause (with delimiter).

‘The send-clausés a special case of an action, with the format:
destination-expressiotr destination-message-nanfeargument.’. ..)’

The transition may contain more than one send clause (with delimiter). The relative order of action
clauses and send clauses is significant and determines their execution order.

UML v 1.1, Notation Guide 111

Statechart Diagrams

Thedestination-expressias an expression that evaluates to an object or a set of objects.

The destination-message-nantethe name of a message (operation or signal) meaningful to the
destination object(s).

Thedestination-expressicend theargumentsnay be written in terms of the parameters of the trig-
gering event and the attributes and links of the owning object.

Branches A simple transition may be extended to include a tree of decision symbols (see Section
10.3). This is equivalent to a set of individual transitions, one for each path through the tree, whose
guard condition is the “and” of all of the conditions along the path.

Transition times. Names may be placed on transitions to designate the times at which they fire. See
the section on transition times within Section 7.6.

9.5.3 Example

right-mouse-down (location) [location in window] / object := pick-object (location)
~ object.highlight ()

The event may be of any of the types; selecting the type depends on the syntax of the name (for time
events, for example) but SignalEvents and CallEvents are not distinguishable by syntax and must
be discriminated by their declaration elsewhere.

9.5.4 Mapping

112

A transition string and the transition arrow that it labels together map into a Transition and its attach-
ments. The arrow connects two state symbols; the Transition has the corresponding States as its
source (the state at the tail) and destination (the state at the head) States in associations to the Tran-
sition.

The event name and parameters map into an Event element, which may be a SignalEvent, a
CallEvent, or a TimeExpression (if it has the proper syntax). The event is attacliegges Asso-
ciation to the Transition.

The guard condition maps into a Guard element attached to the Transition.

An action expression maps into an ActionSequence attachede#s@Association to the Transi-

tion; the target object expression (if any) in the expression mapstargeaObjectSetExpression.

Each term in the action expression maps into an Action that is a part of the ActionSequence. A send
clause maps into a RaiseAction with an ObjectSetExpression for the destination.

A transition time label on a transition maps into a TimingMark attached to the Transition.

UML v1.1, Notation Guide

Statechart Diagrams

9.6 COMPLEX TRANSITIONS

A complex transition may have multiple source states and target states. It represents a synchroniza-
tion and/or a splitting of control into concurrent threads without concurrent substates.

9.6.1 Semantics

A complex transition is enabled when all of the source states are occupied. After a complex transi-
tion fires all of its destination states are occupied.

9.6.2 Notation

A complex transition is shown as a short heavy bayitahronizatiorbar, which can represent syn-
chronization, forking, or both). The bar may have one or more solid arrows from states to the bar
(these are theource statésthe bar may have one or more solid arrows from the bar to states (these
are thedestination statgsA transition string may be shown near the bar. Individual arrows do not
have their own transition strings.

9.6.3 Example

Figure 46. Complex transition

9.6.4 Mapping

A bar with multiple transition arrows leaving it maps into a fork Pseudostate; a bar with multiple
transition arrows entering it maps into a join Pseudostate. The Transitions corresponding to the
incoming and outgoing arrows attach to the pseudostate as if it were a regular state. If a bar has mul-
tiple incoming and multiple outgoing arrows, then it maps into a Join connected to a Fork pseu-
dostate by a single Transition with no attachments.

UML v 1.1, Notation Guide 113

Statechart Diagrams

9.7 TRANSITIONS TO NESTED STATES

9.7.1 Semantics

A transition drawn to the boundary of a complex state is equivalent to a transition to its initial state
(or to a complex transition to the initial states of each of its concurrent subregions if it is concurrent).
The entry action is always performed when a state is entered from outside.

A transition from a complex state indicates a transition that applies to each of the states within the
state region (at any depth); it is “inherited” by the nested states. Inherited transitions can be masked
by the presence of nested transitions with the same trigger.

9.7.2 Notation

114

A transition drawn to a complex state boundary indicates a transition to the complex state. This is
equivalent to a transition to the initial state within the complex state region; the initial state must be
present. If the state is a concurrent complex state, then the transition indicates a transition to the ini-
tial state of each of its concurrent substates.

Transitions may be drawn directly to states within a complex state region at any nesting depth. All
entry actions are performed for any states that are entered on any transition. On a transition within
a concurrent complex state, transition arrows from the synchronization bar may be drawn to one or
more concurrent states; any other concurrent subregions start with their default initial states.

A transition drawn from a complex state boundary indicates a transition of the complex state. If such
a transition fires, any nested states are forcibly terminated and perform their exit actions, then the
transition actions occur and the new state is established.

Transitions may be drawn directly from states within a complex state region at any nesting depth to
outside states. All exit actions are performed for any states that are exited on any transition. On a
transition from within a concurrent complex state, transition arrows may be specified from one or
more concurrent states to a synchronization bar; specific states in the other regions are therefore
irrelevant to triggering the transition.

A state region may containhgstory state indicatoshown as a small circle containing an ‘H’. The
history indicator applies to the state region that directly contains it. A history indicator may have
any number of incoming transitions from outside states. It may have at most one outgoing unlabeled
transition; this identifies the default “previous state” if the region has never been entered. If a tran-
sition to the history indicator fires it indicates that the object resumes the state it last had within the
complex region; any necessary entry actions are performed. The history indicator may also be ‘H*'
for deep historyThis indicates that the object resumes the state it last had at any depth within the
complex region, rather than being restricted to the state at the same level as the history indicator. A
region may have both shallow and deep history indicators.

UML v1.1, Notation Guide

Statechart Diagrams

9.7.3 Presentation options

Stubbed transitions Nested states may be suppressed. Transitions to nested states are subsumed
to the most specific visible enclosing state of the suppressed state. Subsumed transitions that do not
come from an unlabeled final state or go to an unlabeled initial state may (but need not) be shown
as coming from or going &tubs A stubis shown as a small vertical line drawn inside the boundary

of the enclosing state. It indicates a transition connected to a suppressed internal state. Stubs are not
used for transitions to initial or from final states.

Note that events should be shown on transitions leading into a state, either to the state contour or to
an internal substate, including a transition to a stubbed state. Events should not normally be shown
on transitions leading from a stubbed state to an external state, however. Think of a transition as
belonging to its source state; if the source state is suppressed then so are the details of the transition.
Note also that a transition from a final state is summarized by an unlabeled transition from the com-
plex state contour (denoting the implicit event “action complete” for the corresponding state).

9.7.4 Example

See Figure 44 and Figure 46 for examples of complex transitions. Following are examples of
stubbed transitions and the history indicator.

Figure 47. Stubbed transitions

UML v 1.1, Notation Guide 115

Statechart Diagrams

Figure 48. History indicator

-~

o

A2

\

9.7.5 Mapping

interrupt

resume

An arrow to any state boundary, nested or not, maps into a Transition between the corresponding
States. Similarly for transitions directly to history states.

A history indicator maps into a Pseudostate of kindllowHistoryor deepHistory.

A stubbed transition does not map into anything in the model. It is a notational elision that indicates
the presence of transitions to additional states in the model that are not visible in the diagram.

9.8 SENDING MESSAGES

9.8.1 Semantics

Messages are sent by an action in an object to a target set of objects; the target set can be a single
object, the entire system, or some other set. The sender can be subsumed to an object, a composite

object, or a class.

9.8.2 Notation

See Section 9.5 for the text syntax of sending messages that cause events for other objects.

Sending such a message can also be shown visually. See Section 7.5 and Section 8.9 for details of
showing messages in sequence diagrams and collaboration diagrams.

Sending a message between state diagrams may be shown by drawing a dashed arrow from the
sender to the receiver. Messages must be sent between objects, so this means that the diagram must

116

UML v1.1, Notation Guide

Statechart Diagrams

be some form of object diagram containing objects (not classes). The arrow is labeled with the event
name and arguments of the event that is caused by the reception of the event. Each state diagram
must be contained within an object symbol representing a collaborating object; graphically the state
diagrams may be nested physically within an object symbol, or the object endositgte dia-

gram may be implicit (being the object owning the main state diagram at issue). The state diagrams
represent the states of the collaborating objects.

Note that this notation may also be used on other kinds of diagrams to show sending of events
between classes or objects.

The sender symbol may be one of:

A transition. The message is sent as part of the action of firing the transition. This is an alter-
nate presentation to the text syntax for sending messages.

An object. The message is sent by an object of the class at some point in its life, but the
details are unspecified.

The receiver may be one of:

An object, including a class reference symbol containing a state diagram. The message is
received by the object and may trigger a transition on the corresponding event. There may
be many transitions involving the event. This notation may not be used when the target
object is computed dynamically; in that case a text expression must be used.

A transition. The transition must be the only transition in the object involving the given
event, or at least the only transition that could possibly be triggered by the particular
sending of the message. This notation may not be used when the transition triggered
depends on the state of the receiving object and not just on the sender.

A class designation. This notation would be used to model the invocation of class-scope
operations, such as the creation of a new instance. The receipt of such a message causes the
instantiation of a new object in its default initial state. The event seen by the receiver may

be used to trigger a transition from its default initial state and therefore represents a way to
pass information from the creator to the new object.

UML v 1.1, Notation Guide 117

Statechart Diagrams

9.8.3 Example

118

Figure 49. Sending messages

VCR

toggle Power

toggle Power

toggle Power |

Remote Control

TV

Controlling

N~~~ =

“power” button
“television.togglePower

; R “power” button
VCR m AVCR.togglePower

Controlling

“T\

togglePower

Television

toggle Power

toggle Power

UML v1.1, Notation Guide

Statechart Diagrams

Figure 50. Creating and destroying objects

Pawn //Alive double move \
= En passant
pa—— opponent moves
‘ Unm
create(file,rank=2) capture
single move

Moved
when (piece on 8th rank) ove

“piece.create(file,rank)
{where piece =
Queen, Rook, Bishop, or Knight}

captured

9.8.4 Mapping

A send arrow to an object maps into a SendAction whtesssagés a Signal that corresponds to
the name on the arrow and whadametObjectSetExpression corresponds to the target object.

If the arrow goes directly to a transition in the target object statechart, theargbeObjectSe-
tExression corresponds to the object owning the statechart containing the transition. In addition, the
transition in the target statechart implicitly triggers on the event being sent (i.e., the name of the sent
event is effectively written on the target transition).

If the sender symbol is an object, then the diagram is suggestive of the sender but has no actual
semantic mapping.

UML v 1.1, Notation Guide 119

Statechart Diagrams

9.9 INTERNAL TRANSITIONS

9.9.1 Semantics

An internal transition is a transition that remains within a single state rather than a transition that
involves two states. It represents the occurrence of an event that does not cause a change of state.
Entering the state (from any other state not nested in the particular state) and exiting the state (to
any other state not nested in the particular state) are treated notationally as internal transitions with
the reserved words “entry” and “exit”, but they are not really internal transitions in the internal
model.

Note that an internal transition is not equivalent to a self-transition from a state back to the same
state. The self-transition causes the exit and entry actions on the state to be executed and the initial
state to be entered, whereas the internal transition does not invoke the exit and entry actions and
does not cause a change of state (including a nested state).

9.9.2 Notation

An internal transition is attached to the state rather than a transition. Graphically it is shown as a
text string within the internal transition compartment on a state symbol. The syntax of an internal
transition string is the same as for an external transition. See Section 9.5 for details.

Figure 51. State with internal transitions

(Typing Password \

help / display help
entry / set echo invisible
exit / set echo normal

9.9.3 Mapping

The mapping for internal transitions has been given in Section 9.2.4.

120 UML v1.1, Notation Guide

Activity Diagram

10. ACTIVITY DIAGRAM

10.1 ACTIVITY DIAGRAM

10.1.1 Semantics

An activity model is a variation of a state machine in which the states are Activities representing
the performance of operations and the transitions are triggered by the completion of the operations.
It represents a state machine of a procedure itself; the procedure is the implementation of an oper-
ation on the owning class.

10.1.2 Notation

An activity diagram is a special case of a state diagram in which all (or at least most) of the states
are action states and in which all (or at least most) of the transitions are triggered by completion of
the actions in the source states. The entire activity diagram is attached (through the model) to a class
or to the implementation of an operation or a use case. The purpose of this diagram is to focus on
flows driven by internal processing (as opposed to external events). Use activity diagrams in situa-
tions where all or most of the events represent the completion of internally-generated actions (that
is, procedural flow of control). Use ordinary state diagrams in situations where asynchronous events
occur.

UML v 1.1, Notation Guide 121

122

Activity Diagram

10.1.3 Example

Figure 52. Activity diagram

Person::Prepare Beverage

\ Beverage /

/ Find \ [no coffee]

[no cola]

[found coffee]

Put Coffee
in Filter

Put Filter
in Machine

Add Water
to Reservoir

Turn on
Machine

Brew coffee

coffeePot.turnOn

light goes out

Pour Coffee)

Get
Cups

[found cola]

Get cans
of cola

()

UML v1.1, Notation Guide

Activity Diagram

10.1.4 Mapping

An activity diagram maps into an ActivityModel.

10.2 ACTION STATE

10.2.1 Semantics

An action statds a shorthand for a state with an internal action and at least one outgoing transition
involving the implicit event of completing the internal action (there may be several such transitions
if they have guard conditions). Action states should not have internal transitions or outgoing tran-
sitions based on explicit events; use normal states for this situation. The normal use of an action
state is to model a step in the execution of an algorithm (a procedure).

10.2.2 Notation

An action state is shown as a shape with straight top and bottom and with convex arcs on the two
sides. Theaction-expressiolis placed in the symbol. The action expression need not be unique
within the diagram.

Transitions leaving an action state should not include an event signature; such transitions are implic-

itly triggered by the completion of the action in the state. The transitions may include guard condi-
tions and actions.

10.2.3 Presentation options

The action may be described by natural language, pseudocode, or programming language code. It
may use only attributes and links of the owning object.

Note that action state notation may be used within ordinary state diagrams but they are more com-
monly used with activity diagrams, which are special cases of state diagrams.

10.2.4 Example

Figure 53. Activities

<matrix.invert (toIerance:ReaI)>

UML v 1.1, Notation Guide 123

Activity Diagram

10.2.5 Mapping

An action state symbol maps into an ActionState invoking a CallAction. This is equivalent to an
entry action on a regular state. There isaxit nor any internal transitions. The State is normally
anonymous.

10.3 DECISIONS

10.3.1 Semantics

A state diagram (and by derivation an activity diagram) expresses a decision when guard conditions
are used to indicate different possible transitions that depend on Boolean conditions of the owning
object. UML provides shorthand for showing decisions.

10.3.2 Notation

A decision may be shown by labeling multiple output transitions of an action with different guard
conditions.

The icon provided for a decision is the traditional diamond shape, with one or more incoming
arrows and with two or more outgoing arrows, each labeled by a distinct guard condition with no
event trigger. All possible outcomes should appear on one of the outgoing transitions.

Note that a chain of decisions may be part of a complex transition, but only the first segment in such
a chain may contain an event trigger label. All segments may have guard expressions.

10.3.3 Example

Figure 54. Decision

Calculate [cost < $50] Charge
total cost customer’s
account
[cost= $50]
Get
authoriation

124 UML v1.1, Notation Guide

Activity Diagram

10.3.4 Mapping

A decision symbol maps into a Pseudostate of kilmthch.Each label on an outgoing arrow maps
into a Guard on the corresponding Transition leaving the Pseudostate.

10.4 SWIMLANES

10.4.1 Semantics

Actions may be organized insvimlanesSwimlanes are a kind of package for organizing respon-
sibility for activities within a class. They often correspond to organizational units in a business
model.

10.4.2 Notation

An activity diagram may be divided visually into “swimlanes” each separated from neighboring
swimlanes by vertical solid lines on both sides. Each swimlane represents responsibility for part of
the overall activity, and may eventually be implemented by one or more objects. The relative
ordering of the swimlanes has no semantic significance but might indicate some affinity. Each
action is assigned to one swimlane. Transitions may cross lanes; there is no significance to the
routing of a transition path.

UML v 1.1, Notation Guide 125

Activity Diagram

10.4.3 Example

Figure 55. Swimlanes in activity diagram

Customer Sales Stockroom

Request service

Take order

Pay

RN

Fill order

Deliver order

[

Collect order

10.4.4 Mapping

A swimlane maps into a Partition of the States in the ActivityModel. A state symbol in a swimlane
causes the corresponding State to belong to the corresponding Partition.

126 UML v1.1, Notation Guide

Activity Diagram

10.5 ACTION-OBJECT FLOW RELATIONSHIPS

10.5.1 Semantics

Activities operate by and on objects. Two kinds of relationships can be shown: The kinds of objects
that have primary responsibility for performing an action and the other objects whose values are
used or determined by the action. These are modeled as messages sent between the object owning
the activity model and the objects that are input or output by the actions in the model.

10.5.2 Notation

Object responsible for an action.The object responsible for performing an action can be shown

by drawing a lifeline and placing actions on lifelines Each lifeline represents a distinct object. There
may be multiple lifelines for different objects of the same or different kinds. If this approach is
chosen, usually a sequence diagram should be used. See Section 7.2. If an object lifeline is not
shown, then some object within the swimlane package is responsible for the action but the object is
not shown. Multiple actions within a single swimlane can be handled by the same or different
objects.

Object flow. Objects that are input to or output by an action may be shown as object symbols. A
dashed arrow is drawn from an action outgoing transition to an output object, and a dashed arrow
is drawn from an input object to an incoming arrow of an action. The same object may be (and usu-
ally is) the output of one action and the input of one or more subsequent actions.

The control flow (solid) arrows may be omitted when the object flow (dashed) arrows supply a
redundant constraint. In other words, when an action produces an output that is input by a subse-
guent action, that object flow relationship implies a control constraint.

Object in state.Frequently the same object is manipulated by a number of successive activities. It
is possible to show the arrows to and from all of the relevant activities. For greater clarity, however,
the object may be displayed multiple times on a diagram, each appearance denoting a different point
during its life. To distinguish the various appearances of the same object, the state of the object at
each point may be placed in brackets and appended to the name of the object, for &uample,
chaseOrder[approved]. This notation may also be used in collaboration diagrams.

UML v 1.1, Notation Guide 127

Activity Diagram

10.5.3 Example

Figure 56. Actions and object flow

Customer Sales Stockroom
Request service
T~ Order
=
[placed] [—
- Order
= [entered]

Order ;
1 — Fill order
i filed] = -

Order
[delivered]

T

Collect order

10.5.4 Mapping

An object flow symbol maps into an ObjectFlowState whose incoming and outgoing Transitions
correspond to the incoming and outgoing arrows. The Transitions have no attachments. The class

name and (optional) state name of the object flow symbol map into a Class or a ClassifierInState
with the given name(s).

128 UML v1.1, Notation Guide

Activity Diagram

10.6 CONTROL ICONS

The following icons provide explicit symbols for certain kinds of information that can be specified

on transitions. These icons are not necessary for constructing activity diagrams but many users
prefer the added impact that they provide.

10.6.1 Stereotypes

Signal receipt.The receipt of a signal may be shown as a concave pentagon that looks like a rect-
angle with a triangular notch in its side (either side). The signature of the signal is shown inside the
symbol. A unlabeled transition arrow is drawn from the previous action state to the pentagon and
another unlabeled transition arrow is drawn from the pentagon to the next action state. This symbol
replaces the event label on the transition. A dashed arrow may be drawn from an object symbol to
the notch on the pentagon to show the sender of the signal; this is optional.

Signal sending.The sending of a signal may be shown as a convex pentagon that looks like a rect-
angle with a triangular point on one side (either side). The signature of the signal is shown inside
the symbol. A unlabeled transition arrow is drawn from the previous action state to the pentagon
and another unlabeled transition arrow is drawn from the pentagon to the next action state. This
symbol replaces the send-signal label on the transition. A dashed arrow may be drawn from the
point on the pentagon to an object symbol to show the receiver of the signal; this is optional.

Figure 57. Symbols for signal receipt and sending

Turn on
Machine

turnOn — =

coffeePot

Brew coffee

(Pour Coffee)

UML v 1.1, Notation Guide 129

Activity Diagram

Deferred eventsA frequent situation is when an event that occurs must be “deferred” for later use
while some other activity is underway. (Normally an event that is not handled immediately is lost.)
This may be thought of as having an internal transition that handles the event and places it on an
internal queue until it is needed or until it is discarded. Each state or activity specifies a set of events
that are deferred if they occur during the state or activity. If an event is not included in the set of
deferred events for a state, then it is discarded from the queue even if it has already occurred. If a
transition depends on an event, the transition fires immediately if the event is already on the internal
gueue. If several transitions are possible, the leading event in the queue takes precedence.

A deferred event is shown by listing it within the state followed by a slash and the special operation
defer.If the event occurs, it is saved and it recurs when the object transitions to another state, where
it may be deferred again. When the object reaches a state in which the event is not deferred, it must
be accepted or lost. The indication may be placed on a composite state, in which case it remains
deferred throughout the composite state.

When used in conjunction with an action state, a deferred event that occurs during the action state
is deferred until the action is completed, when it may trigger a transition. This means that the tran-
sition will occur correctly regardless of the relative order of the event and the action completion.

Figure 58. Deferred event

Turn on

Machine

turnOn

Brew coffee
light goes out / defe

&

Get Cups
light goes out / defer

light goes out <

(Pour Coffee)

130 UML v1.1, Notation Guide

Activity Diagram

10.6.2 Mapping

An input event symbol maps into an event trigger on the Transition between the States corre-
sponding to the connected state symbols.

An output event symbols maps into a RaiseAction on the Transition between the States corre-
sponding to the connected state symbols.

An input event symbol whose successor is a join symbol maps into an event trigger on a Transition
to an implicit dummy State; the outgoing Transition from the dummy State enters the join Pseu-
dostate.

A deferred event attached to a state maps imtefarredEventassociation from the State to the
Event.

UML v 1.1, Notation Guide 131

Implementation Diagrams

11. IMPLEMENTATION DIAGRAMS

Implementation diagrams show aspects of implementation, including source code structure and run-
time implementation structure. They come in two forms: component diagrams show the structure
of the code itself and deployment diagrams show the structure of the run-time system.

11.1 COMPONENT DIAGRAMS

11.1.1 Semantics

A component diagram shows the dependencies among software components, including source code
components, binary code components, and executable components. A software module may be rep-
resented as a component type. Some components exist at compile time, some exist at link time, and
some exist at run time; some exist at more than one time. A compile-only component is one that is
only meaningful at compile time; the run-time component in this case would be an executable pro-
gram.

A component diagram has only a type form, not an instance form. To show component instances,
use a deployment diagram (possibly a degenerate one without nodes).

11.1.2 Notation

A component diagram is a graph of components connected by dependency relationships. Compo-
nents may also be connected to components by physical containment representing composition rela-
tionships.

A diagram containing component types and node types may be used to show compiler dependen-
cies, which are shown as dashed arrows (dependencies) from a client component to a supplier com-
ponent that it depends on in some way. The kinds of dependencies are language-specific and may
be shown as stereotypes of the dependencies.

The diagram may also be used to show interfaces and calling dependencies among components,
using dashed arrows from components to interfaces on other components.

132 UML v1.1, Notation Guide

Implementation Diagrams

11.1.3 Example

Figure 59. Component diagram

Scheduler —%D reservations

Planner | %O update

GUI

11.1.4 Mapping

A component diagram maps to a static model whose elements include Components.
11.2 DEPLOYMENT DIAGRAMS

11.2.1 Semantics

Deployment diagrams show the configuration of run-time processing elements and the software
components, processes, and objects that live on them. Software component instances represent run-
time manifestations of code units. Components that do not exist as run-time entities (because they
have been compiled away) do not appear on these diagrams; they should be shown on component

diagrams.

UML v 1.1, Notation Guide

Implementation Diagrams

11.2.2 Notation

A deployment diagram is a graph of nodes connected by communication associations. Nodes may
contain component instances; this indicates that the component lives or runs on the node. Compo-
nents may contain objects; this indicates that the object is part of the component. Components are
connected to other components by dashed-arrow dependencies (possibly through interfaces). This
indicates that one component uses the services of another component; a stereotype may be used to
indicate the precise dependency if needed.

The deployment type diagram may also be used to show which components may run on which
nodes, by using dashed arrows with the stereotype «supports».

Migration of components from node to node or objects from component to component may be
shown using the «becomes» stereotype of the dependency relationship. In this case the component
or object is resident on its node or component only part of the entire time.

Note that a process is just a special kind of object (see Active Obiject).

11.2.3 Example

134

Figure 60. Nodes

AdminServer:HostMachine
«database»

_ 7| meetingsDB

:Scheduler

N reservations

Joe’sMachine:PC \

E :Planner

UML v1.1, Notation Guide

Implementation Diagrams

11.2.4 Mapping

A deployment diagram maps to a static model whose elements include Nodes. It is not particularly
distinguished in the model.

11.3 NODES

11.3.1 Semantics

A node is a run-time physical object that represents a processing resource, generally having at least
a memory and often processing capability as well. Nodes include computing devices but also human
resources or mechanical processing resources. Nodes may be represented as type and as instances.
Run time computational instances, both objects and component instances, may reside on node
instances.

11.3.2 Notation

A node is shown as a figure that looks like a 3-dimensional view of a cube.
A node type has a type name:
node-type

A node instance has a name and a type name. The node may have an underlined name string in it or
below it. The name string has the syntax:

name’’ node-type

The name is the name of the individual node (if any). The node-type says what kind of a node it is.
Either or both elements are optional.

Dashed-arrow dependency arrows show the capability of a node type to support a component type.
A stereotype may be used to state the precise kind of dependency.

Component instances and objects may be contained within node instance symbols. This indicates
that the items reside on the node instances. Containment may also be shown by aggregation or com-
position association paths.

Nodes may be connected by associations to other nodes. An association between nodes indicates a

communication path between the nodes. The association may have a stereotype to indicate the
nature of the communication path (for example, the kind of channel or network).

UML v 1.1, Notation Guide 135

Implementation Diagrams

11.3.3 Example

This example shows two nodes containing an object (cluster) that migrates from one node to another
and also an object that remains in place.

Figure 61. Use of nodes to hold objects

Nodel
«database»
«cluster»
//
y /«becomes»
Node2 //

Va

«cluster»

11.3.4 Mapping

A node maps to a «node» stereotype of a Class or Object. The nesting of symbols within the node
symbol maps into a composition association between a node class and constituent classes or a com-
position link between a node object and constituent objects.

11.4 COMPONENTS

11.4.1 Semantics

A component type represents a distributable piece of implementation of a system, including soft-
ware code (source, binary, or executable) but also including business documents, etc., in a human
system. Components may be used to show dependencies, such as compiler and run-time dependen-
cies or information dependencies in a human orgzanization. A component instance represents a run-

136 UML v1.1, Notation Guide

Implementation Diagrams

time implementation unit and may be used to show implementation units that have identity at run
time, including their location on nodes.

11.4.2 Notation

A component is shown as a rectangle with two small rectangles protruding from its side.
A component type has a type name:
component-type

A component instance has a name and a type. The name of the component and its type may be
shown as an underlined string either within the component symbol or above or below it, with the
syntax:

component-name component-type

A property may be used to indicate the life-cycle stage that the component describes (source, binary,
executable, or more than one of those). Components (including programs, DLLs, run-time linkable
images, etc.) may be located on nodes.

11.4.3 Example

The example shows a component with interfaces and also a component that contains objects at run
time.

Figure 62. Component

Dictionary | Spell-check

— O synonyms

mymailer: Mailer

RoutingList

Mailbox

UML v 1.1, Notation Guide 137

Implementation Diagrams

11.4.4 Mapping

A component symbol maps into a «component» stereotype of a Class or an Object. Graphical
nesting of other symbols maps into composition association of the Component to Classes or Objects
in it.

Interface circles attached to the component symbol by solid lines magupportsDependencies
to Interfaces.

11.5 LOCATION OF COMPONENTS AND OBJECTS WITHIN OBJECTS

11.5.1 Semantics

Instances may be located within other instances. For example, objects may live in processes that
live in components that live on nodes. In more complicated situations processes may migrate from
node to node, so a process may live in many nodes and deal with many components over time.

11.5.2 Notation

The location of an instance (including objects, component instances, and node instances) within
another instance may be shown by physical nesting. Containment may also be shown by aggrega-
tion or composition association paths. Alternately, an instance may have a property tag “location”
whose value is the name of the containing instance.

If an object moves during an interaction, then it may be as two or more occurrences with a
“becomes” dependency between the occurrences. The dependency may have a time property
attached to it to show the time when the object moves. Each occurrence represents the object during
a period of time. Messages should be directed to the correct occurrence of the object.

11.5.3 Example

See the other diagrams in this section for examples of objects and components located on nodes as
well as migration.

11.5.4 Mapping

Physical nesting of symbols maps into compaosition association from the Element corresponding to
the outer symbol to the Elements corresponding to the contents.

138 UML v1.1, Notation Guide

Index

A

action statel 23
action, special 05
action-clausel11
activation84

active objec96
activity diagram121
actor77
aggregatiorb4
associatiorbO
association class1, 59
association namB0
association rol&2
attribute29

B

background informatiod
binary associatio®0
bind 71

bound templat&O

C

call event109

class23

class diagran22

class pathnamd3
classifier23
collaboration88, 92
collaboration diagran88, 89
commentl6
communicates 8
complex transitiorl13
componentl 36
component diagrarh32
composite objecd8
composite statd 04

UML v 1.1, Notation Guide

composition62
concurrent substatb07
constraintl6

context89

creation (of an object) 02

D

decision124

deferred eveni 30
dependency’ 1
deployment diagramd 33
derived elemen?3
design patter®0
destination stat&é13
destruction (of an objecf)02
discriminator67

disjoint substatd 07

do 105

E

entry action105

event108

exit action105

expressior8

extends (a use casé®
extensibility mechanisrii8, 20
extension poin¥7

F

final state107

G

generalizatior67
generalization constrains8
graphic symbolS

139

Index

graphs3
guard-conditionl11

H

history statel 14
hyperlinks4

importing packaged44
initial state107
interaction93
interaction diagran80
interface36

internal activityl05
internal transitionl20
invisible links 4

K
keyword8

L

label 7

link 65

list compartmen26
location of objectl 38

M

message (in a sequence diagr&d)

message flov®8
metaclas#3
multiobject95
Multiplicity 56

N

name6

name compartmeritb
n-ary associatio®l
navigability 53
navigation expressio8
nested state machidd5
nodel35

note10

140

O

object46, 94
object diagran23
object flow 127
object lifeline83
object statel 27
operation32
or-associatiorbl
overview1l

P

packagel3

parameterized clas38
participates (in a use casé}
pathname43

paths4

pattern90
programming-language tyg
property stringl8

Q

qualifier 58
R

refinement/1
role (associationdp2
rolenameb4

S

send-clausd 11
sending message
within state diagran116
sequence diagra®0
signal evenfl09
source statd 13
state
composite1l04
statechart diagrarh03
stereotype20
string5
stubbed transitiod 15
substatel 06
swimlanel25

UML v 1.1, Notation Guide

synchronization bat13

T

tagged valud.8

template38

time event109

timing mark87

timing mark (in state diagrani)12
trace71

transition111

transition timel12

transition to nested stafel 4

type 35

U

usage dependendil
use case/

use case diagramb
use case relationshigs
uses (a use caség
utility 42

V
visibility 29

UML v 1.1, Notation Guide

Index

141

Index

142 UML v 1.1, Notation Guide

	Contents
	1. Document Overview
	2. Diagram Elements
	2.1 Graphs and their Contents
	2.2 Drawing paths
	2.3 Invisible Hyperlinks And The Role Of Tools
	2.4 Background information
	2.4.1 Presentation options

	2.5 String
	2.5.1 Semantics
	2.5.2 Notation
	2.5.3 Presentation options
	2.5.4 Example
	2.5.5 Mapping

	2.6 Name
	2.6.1 Semantics
	2.6.2 Notation
	2.6.3 Example
	2.6.4 Mapping

	2.7 Label
	2.7.1 Semantics
	2.7.2 Notation
	2.7.3 Presentation options
	2.7.4 Example

	2.8 Keywords
	2.9 Expression
	2.9.1 Semantics
	2.9.2 Notation
	2.9.3 Example
	2.9.4 Mapping
	2.9.5 OCL Expressions
	2.9.6 Selected OCL Notation
	2.9.7 Example

	2.10 Note
	2.10.1 Semantics
	2.10.2 Notation
	2.10.3 Presentation options
	2.10.4 Example
	2.10.5 Mapping

	2.11 Type-Instance Correspondence

	3. Model Management
	3.1 Packages and Model Organization
	3.1.1 Semantics
	3.1.2 Notation
	3.1.3 Presentation options
	3.1.4 Style guidelines
	3.1.5 Example
	3.1.6 Mapping

	4. General Extension Mechanisms
	4.1 Constraint and Comment
	4.1.1 Semantics
	4.1.2 Notation
	4.1.3 Example
	4.1.4 Mapping

	4.2 Element Properties
	4.2.1 Semantics
	4.2.2 Notation
	4.2.3 Presentation options
	4.2.4 Style guidelines
	4.2.5 Example
	4.2.6 Mapping

	4.3 Stereotypes
	4.3.1 Semantics
	4.3.2 Notation
	4.3.3 Example
	4.3.4 Mapping

	5. Static Structure Diagrams
	5.1 Class diagram
	5.1.1 Semantics
	5.1.2 Notation
	5.1.3 Mapping

	5.2 Object diagram
	5.3 Classifer
	5.4 Class
	5.4.1 Semantics
	5.4.2 Basic notation
	5.4.3 Presentation options
	5.4.4 Style guidelines
	5.4.5 Example
	5.4.6 Mapping

	5.5 Name Compartment
	5.5.1 Notation
	5.5.2 Mapping

	5.6 List Compartment
	5.6.1 Notation
	5.6.2 Presentation options
	5.6.3 Example
	5.6.4 Mapping

	5.7 Attribute
	5.7.1 Semantics
	5.7.2 Notation
	5.7.3 Presentation options
	5.7.4 Style guidelines
	5.7.5 Example
	5.7.6 Mapping

	5.8 Operation
	5.8.1 Operation
	5.8.2 Notation
	5.8.3 Presentation options
	5.8.4 Style guidelines
	5.8.5 Example
	5.8.6 Mapping
	5.8.7 Signal reception

	5.9 Type vs. Implementation Class
	5.9.1 Semantics
	5.9.2 Notation
	5.9.3 Example
	5.9.4 Mapping

	5.10 Interfaces
	5.10.1 Semantics
	5.10.2 Notation
	5.10.3 Example
	5.10.4 Mapping

	5.11 Parameterized Class (Template)
	5.11.1 Semantics
	5.11.2 Notation
	5.11.3 Presentation options
	5.11.4 Example
	5.11.5 Mapping

	5.12 Bound Element
	5.12.1 Semantics
	5.12.2 Notation
	5.12.3 Style guidelines
	5.12.4 Example
	5.12.5 Mapping

	5.13 Utility
	5.13.1 Semantics
	5.13.2 Notation
	5.13.3 Example
	5.13.4 Mapping

	5.14 Metaclass
	5.14.1 Semantics
	5.14.2 Notation
	5.14.3 Mapping

	5.15 Class Pathnames
	5.15.1 Notation
	5.15.2 Example
	5.15.3 Mapping

	5.16 Importing a package
	5.16.1 Semantics
	5.16.2 Notation
	5.16.3 Example
	5.16.4 Mapping

	5.17 Object
	5.17.1 Semantics
	5.17.2 Notation
	5.17.3 Presentation options
	5.17.4 Style guidelines
	5.17.5 Variations
	5.17.6 Example
	5.17.7 Mapping

	5.18 Composite object
	5.18.1 Semantics
	5.18.2 Notation
	5.18.3 Example
	5.18.4 Mapping

	5.19 Association
	5.20 Binary Association
	5.20.1 Semantics
	5.20.2 Notation
	5.20.3 Presentation options
	5.20.4 Style guidelines
	5.20.5 Options
	5.20.6 Example
	5.20.7 Mapping

	5.21 Association End
	5.21.1 Semantics
	5.21.2 Notation
	5.21.3 Presentation options
	5.21.4 Style guidelines
	5.21.5 Example
	5.21.6 Mapping

	5.22 Multiplicity
	5.22.1 Semantics
	5.22.2 Notation
	5.22.3 Style guidelines
	5.22.4 Example
	5.22.5 Mapping

	5.23 Qualifier
	5.23.1 Semantics
	5.23.2 Notation
	5.23.3 Presentation options
	5.23.4 Style guidelines
	5.23.5 Example
	5.23.6 Mapping

	5.24 Association Class
	5.24.1 Semantics
	5.24.2 Notation
	5.24.3 Presentation options
	5.24.4 Style guidelines
	5.24.5 Example
	5.24.6 Mapping

	5.25 N-ary association
	5.25.1 Semantics
	5.25.2 Notation
	5.25.3 Style guidelines
	5.25.4 Example
	5.25.5 Mapping

	5.26 Composition
	5.26.1 Semantics
	5.26.2 Notation
	5.26.3 Design guidelines
	5.26.4 Example
	5.26.5 Mapping

	5.27 Links
	5.27.1 Semantics
	5.27.2 Notation
	5.27.3 Example
	5.27.4 Mapping

	5.28 Generalization
	5.28.1 Semantics
	5.28.2 Notation
	5.28.3 Presentation options
	5.28.4 Details
	5.28.5 Example
	5.28.6 Mapping

	5.29 Dependency
	5.29.1 Semantics
	5.29.2 Notation
	5.29.3 Presentation options
	5.29.4 Example
	5.29.5 Mapping

	5.30 Derived Element
	5.30.1 Semantics
	5.30.2 Notation
	5.30.3 Style guidelines
	5.30.4 Example
	5.30.5 Mapping

	6. Use Case Diagrams
	6.1 Use Case Diagram
	6.1.1 Semantics
	6.1.2 Notation
	6.1.3 Example
	6.1.4 Mapping

	6.2 Use Case
	6.2.1 Semantics
	6.2.2 Notation
	6.2.3 Presentation options
	6.2.4 Style guidelines
	6.2.5 Mapping

	6.3 Actor
	6.3.1 Semantics
	6.3.2 Notation
	6.3.3 Style guidelines
	6.3.4 Mapping

	6.4 Use case relationships
	6.4.1 Semantics
	6.4.2 Notation
	6.4.3 Example
	6.4.4 Mapping

	7. Sequence Diagrams
	7.1 Kinds of Interaction Diagrams
	7.2 Sequence diagram
	7.2.1 Semantics
	7.2.2 Notation
	7.2.3 Presentation options
	7.2.4 Example
	7.2.5 Mapping

	7.3 Object lifeline
	7.3.1 Semantics
	7.3.2 Notation
	7.3.3 Example
	7.3.4 Mapping

	7.4 Activation
	7.4.1 Semantics
	7.4.2 Notation
	7.4.3 Example
	7.4.4 Mapping

	7.5 Message
	7.5.1 Semantics
	7.5.2 Notation
	7.5.3 Presentation options
	7.5.4 Mapping

	7.6 Transition Times
	7.6.1 Semantics
	7.6.2 Notation
	7.6.3 Example
	7.6.4 Mapping

	8. Collaboration Diagrams
	8.1 C�ollaboration
	8.1.1 Semantics
	8.1.2 Notation

	8.2 Collaboration diagram
	8.2.1 Semantics
	8.2.2 Notation
	8.2.3 Example
	8.2.4 Mapping

	8.3 Pattern Structure
	8.3.1 Semantics
	8.3.2 Notation
	8.3.3 Mapping

	8.4 Collaboration Contents
	8.4.1 Semantics
	8.4.2 Notation

	8.5 Interactions
	8.5.1 Semantics
	8.5.2 Notation
	8.5.3 Example

	8.6 Collaboration Roles
	8.6.1 Semantics
	8.6.2 Notation
	8.6.3 Presentation options
	8.6.4 Example
	8.6.5 Mapping

	8.7 Multiobject
	8.7.1 Semantics
	8.7.2 Notation
	8.7.3 Example
	8.7.4 Mapping

	8.8 Active object
	8.8.1 Semantics
	8.8.2 Notation
	8.8.3 Example
	8.8.4 Mapping

	8.9 Message flows
	8.9.1 Semantics
	8.9.2 Notation
	8.9.3 Presentation options
	8.9.4 Example
	8.9.5 Mapping

	8.10 Creation/destruction markers
	8.10.1 Semantics
	8.10.2 Notation
	8.10.3 Presentation options
	8.10.4 Example
	8.10.5 Mapping

	9. Statechart Diagrams
	9.1 Statechart Diagram
	9.1.1 Semantics
	9.1.2 Notation
	9.1.3 Mapping

	9.2 States
	9.2.1 Semantics
	9.2.2 Notation
	9.2.3 Example
	9.2.4 Mapping

	9.3 Composite States
	9.3.1 Semantics
	9.3.2 Notation
	9.3.3 Example
	9.3.4 Mapping

	9.4 Events
	9.4.1 Semantics
	9.4.2 Notation
	9.4.3 Example
	9.4.4 Mapping

	9.5 Simple transitions
	9.5.1 Semantics
	9.5.2 Notation
	9.5.3 Example
	9.5.4 Mapping

	9.6 Complex transitions
	9.6.1 Semantics
	9.6.2 Notation
	9.6.3 Example
	9.6.4 Mapping

	9.7 Transitions to nested states
	9.7.1 Semantics
	9.7.2 Notation
	9.7.3 Presentation options
	9.7.4 Example
	9.7.5 Mapping

	9.8 Sending messages
	9.8.1 Semantics
	9.8.2 Notation
	9.8.3 Example
	9.8.4 Mapping

	9.9 Internal transitions
	9.9.1 Semantics
	9.9.2 Notation
	9.9.3 Mapping

	10. Activity Diagram
	10.1 Activity diagram
	10.1.1 Semantics
	10.1.2 Notation
	10.1.3 Example
	10.1.4 Mapping

	10.2 Action state
	10.2.1 Semantics
	10.2.2 Notation
	10.2.3 Presentation options
	10.2.4 Example
	10.2.5 Mapping

	10.3 Decisions
	10.3.1 Semantics
	10.3.2 Notation
	10.3.3 Example
	10.3.4 Mapping

	10.4 Swimlanes
	10.4.1 Semantics
	10.4.2 Notation
	10.4.3 Example
	10.4.4 Mapping

	10.5 Action-Object Flow Relationships
	10.5.1 Semantics
	10.5.2 Notation
	10.5.3 Example
	10.5.4 Mapping

	10.6 Control Icons
	10.6.1 Stereotypes
	10.6.2 Mapping

	11. Implementation Diagrams
	11.1 Component diagrams
	11.1.1 Semantics
	11.1.2 Notation
	11.1.3 Example
	11.1.4 Mapping

	11.2 Deployment diagrams
	11.2.1 Semantics
	11.2.2 Notation
	11.2.3 Example
	11.2.4 Mapping

	11.3 Nodes
	11.3.1 Semantics
	11.3.2 Notation
	11.3.3 Example
	11.3.4 Mapping

	11.4 Components
	11.4.1 Semantics
	11.4.2 Notation
	11.4.3 Example
	11.4.4 Mapping

	11.5 Location of Components and objects within obj...
	11.5.1 Semantics
	11.5.2 Notation
	11.5.3 Example
	11.5.4 Mapping

	Index

