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1-dimensional signals

We recognize fundamentally 1-dimensional, 2-dimensional, and multidimensional signals.

1D

1. a real piano tone A

2. a speech
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1-dimensional signals
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2-dimensional signals
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2-dimensional signals

Histogram is a graph showing the number of pixels in an image at each different

intensity value.
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Common Image Processing Problems

• Image restoration and denoising

• Edge detection and denoising

• Image compression
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Image denoising by filter application

c©Department 16111, CTU
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Image restoration and denoising
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Edge detection and denoising
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Edge detection and denoising

c©Department 16111, CTU

11



Restoration, image denoising

Images can be of poor quality for variety reasons:

• low-quality image capture (security video cameras)

• blurring when the picture is taken

• physical damage to an actual photo

• noise contamination during the image capture process

Restoration seeks to return the image to its original quality.
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Edge detection

The features of interest in an image are the edges, areas of transition that indicate the
end of one object and beginning of another.

Applicable in image processing — see Lena1, or in automated vision and robotics.

1Lena Soderberg (Sjööblom) 1972
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Compression

Memory requirement for a typical photograph:

• 24-bit colour ≡ 1 byte for each of the red, green, and blue components

• for 2048× 1526 pixel image we need 2048× 1526× 3 = 9431040 bytes

• 9 MB a picture, what can be stored in a 2 GB memory stick ?

Compression algorithms !!! and their drawbacks
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Analog and Digital Signals — Sampling

• An analog or continuous signal x(t) is a real-valued function of an independent
variable t in the definition domain a ≤ t ≤ b; variable t is usually time.

• The function x(t) can represent the intensity of a sound (audio signal), the speed
of an object, ...

• For N ≥ 1 we define the sampling period Ts =
b − a

N
, the quantity fs =

1
Ts

is

proportional to number of samples taken during each time period and it is called
sampling frequency.

• Finally we obtain digital or sampled signal x(n) = x(a + n × Ts) for 0 ≤ n ≤ N.
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Analog and Digital Signals — Sampling
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Analog and Digital Signals — Quantization

• Sampling is not the only source of error in A/D conversion.

• Consider an analog voltage signal that ranges from 0 to 1 volt.

• An A-to-D converter divides up this 1 volt range into 28 = 256 equally sized
intervals.

• The k-th voltage interval is given by k∆u ≤ u < (k + 1)∆u where ∆u = 1/256V
and k ∈ N0, 0 ≤ k ≤ 255.

• If a measurement of the analog signal at an instant in time falls within the k-th
interval, then the A-to-D converter records the voltage at this time as k∆u.
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Analog and Digital Signals — Quantization

• This k∆u is the quantization step, in which a continuously varying quantity is
truncated or rounded to the nearest of a finite set of values ⇒ quantization error.

• An A-to-D converter as above would be said to be 8-bit, because each analog
measurement is converted into an 8-bit quantity.

The combination of sampling and quantization allows us to digitize a continous signal or
image, and thereby convert it into a form suitable for computer storage and processing.
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Quantization Error y(n) = x(n) + ε(n)
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Vector space — Review

Definition (Vector space)
A vector space over the real numbers R is a set V with two operations, vector
addition and scalar multiplication, with the properties that

1. for all vectors u, v ∈ V the vector sum u + v is defined and the result lies again in
V (closure under addition);

2. for all u ∈ V and scalars a ∈ R the scalar multiple a · u is defined and lies in V
(closure under scalar multiplication);

3. the familiar rules of arithmetic apply

If we replace R above by the field of complex numbers C , then we obtain the definition
of a vector space over the complex numbers.
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Vector space — Arithmetic rules

Specifically, for all scalars a, b ∈ R and u, v,w ∈ V:

a) u + v = v + u, e.g. addition is commutative,

b) (u + v) + w = u + (v + w) e.g. addition is associative,

c) there is a zero vector 0 such that u + 0 = 0 + u ≡ u (additive identity),

d) for each u ∈ V there is an additive inverse vector w such that u + w = 0, we
conventionally write −u for the additive inverse of u,

e) (ab)u = a(bu),

f) (a + b)u = au + bu,

g) a(u + v) = au + av.
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Vector space — Examples

Example

The vector space RN consists of vectors x of the form x = (x1, x2, . . . , xN) where the
xk are all real numbers. Prove all the properties of the vector space, e.g.
multiplication, addition . . .

Warning: In later work we will almost always find it convenient to index the
components of vectors in RN or CN starting with index 0, that is, as
x = (x0, x1, ..., xN−1), rather than the more traditional range 1 to N.
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Vector space — Examples

Example

The sets Mm,n(R) or Mm,n(C), m × n matrices with real or complex entries
respectively, form vector spaces.

Note:
Any multiplicative properties of matrices are irrelevant in this context!!
The vector space Mm,n(R) is an appropriate model for the discretization of images on a
rectangle. Analysis of images is often facilitated by viewing them as members of space
Mm,n(C) .
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Vector space — Linear Combination

Vectors in V can be (i) multiplies by scalars, (ii) added. Using both operation at ones
leads to linear combination of vectors.

Definition (Linear Combination)
A vector v in vector space V is a linear combination of vectors u1;u2; . . . ;um ∈ V if
there exist scalars a1; a2; . . . ; am such that

v = a1 · u1 + a2 · u2 + · · ·+ am · um.
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Vector space — Basis

Definition (Basis)
A set B of elements (vectors) in a vector space V is called a basis, if every element of
V can be written in a unique way as a linear combination of elements of B.

Recall that

• this implies that all basis vectors are linearly independent,

• the coefficients of the linear combination are coordinates of the vector w.r.t. basis
B,
• the dimension of V is given by cardinality of B,
• there is one and only one way to write v ∈ V as a combination of the basis vectors.
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Linear Combination

Recall that each vector u in n-dimensional space Rn can be uniquely represented as a
linear combination of n basis vectors e1, . . . , en:

u = α1e1 + α2e2 + · · ·+ αnen =
N∑
i=0

αiei ,

How do we compute the coordinates, i.e. the values of αi ∈ R?

The traditional approach is to solve a set of linear equations for particular elements of
u = (u1, u2, . . . , un)T, but this is quite demanding . . .

Luckily for us, there is a better way.
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Inner product

Definition (Inner product)
Operation that assigns a non-negative scalar to a pair of vectors u and v, denoted
〈u, v〉, is called an inner product on V if it satisfies the following:

1. 〈a · u + b ·w, v〉 = a · 〈u, v〉+ b · 〈w, v〉
2. 〈u, v〉 = 〈v,u〉
3. 〈u, v〉 ≥ 0, and 〈u,u〉 = 0⇐⇒ v ≡ 0

As 〈u, v〉 ≥ 0, we also have the following:

Definition (Norm of a vector)
The norm or length of a vector u ∈ V is given by

‖u‖ =
√
〈u,u〉 ‖u‖2 = 〈u,u〉
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Inner product space

Definition (Inner product space)
Inner product space is a vector space with inner product operation defined.

For inner product space we still have u ∈ V as a linear combination of e1, e2, . . . , en

u = α1e1 + α2e2 + · · ·+ αnen,

but in addition αi ∈ R can be computed using the inner product 〈·, ·〉 as

αi = 〈u, ei 〉

Example

Starting with 〈u, ei 〉 = 〈α1e1 + α2e2 + · · ·+ αnen, ei 〉 show that indeed αi = 〈u, ei 〉.
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Review vectors — Orthonormal vectors

Definition (Orthornormal vectors)
Vectors ei are orthonormal if they are

1. orthogonal, i.e. it holds that ∀i 6= j : 〈ei , ej〉 = 0

2. normalized, i.e. it holds that ∀i : 〈ei , ei 〉 = ‖ei‖2 = 1

Example
Draw the following two vectors and their sum in the two-dimensional Euclidean space
R2

u = 3 · e1 + 4 · e2

v = −2 · e1 + 3 · e2

and make them normalized.
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Review vectors

Vectors are objects that can be added together and multiplied by scalars - vector space:

If u =
n∑

i=1

αiei and v =
n∑

i=1

βiei and λ is some scalar, then

u + v =
n∑

i=1

(αi + βi )ei

λu =
n∑

i=1

λαiei
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Vector space of continuous-time signals

We have already studied the space of continuous-time signals. We can easily verify:

• we can form the sum of any two signals x1(t) and x2(t) to obtain another signal

x(t) = x1(t) + x2(t)

• we can multiply any signal x(t) by a constant λ to obtain another signal

y(t) = λx(t)

Unlike the n-dimensional space Rn, the vector space of all continuous-time signals is
infinite-dimensional.

34



Lectue Contents

Signals and Images

Signals and A to D conversion

Vector Spaces for Signals and Images

Linear Combination and Inner Product

Vector space of periodic signals

Complete orthonormal systems of functions

Trigonometric and complex exponential Fourier Series

Matlab project

Home work

35



Periodic signals

Definition

Any signal x(t) that satisfies the periodicity condition

∀t : x(t + T ) = x(t)

for given period T is called periodic signal with period T .

x(t)

tτ T T+τ 2T 2T+τ 3T 3T+τ0

1
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Vector space of periodic signals

It is easy to see that periodic signals form a vector space:

• if x1(t) and x2(t) are periodic, then

x(t + T ) = x1(t + T ) + x2(t + T ) = x1(t) + x2(t) = x(t)

is also periodic with the same period T

• if x1(t) is periodic and λ is scalar, then

y(t + T ) = λx(t + T ) = λx(t) = y(t)

is a scaled version of x(t) being also periodic with period T
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Vector space of periodic signals

If we impose even more conditions on periodic signals – the Dirichlet conditions, which
hold for all signals encountered in practice, then we can represent signals as infinite
linear combinations of orthogonal and normalized vectors.

• A function satisfying Dirichlet conditions must have right and left limits at each
point of discontinuity:

x(t+) = lim
τ→t+

x(τ) and x(t−) = lim
τ→t−

x(τ)

• The Dirichlet theorem says in particular that the Fourier series for x(t) converges
and is equal to

x(t) =
x(t+) + x(t−)

2
wherever x(t) is continuous.
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Complete orthonormal systems

Definition (Inner product of T -periodic signals)

We can define the inner product of two T -periodic signals x1(t) and x2(t) as

〈x1(t), x2(t)〉 =

∫ T

0
x1(t)x2(t) dt.

As the signal is periodic, we can integrate over any complete period, i.e. from −T/2 to
T/2 or from −T to 0:

〈x1(t), x2(t)〉 =

∫ T
2

−T
2

x1(t)x2(t) dt =

∫ 0

−T
x1(t)x2(t) dt.
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Complete orthonormal systems

Then we can take any sequence of T -periodic functions {φj(t)}j∈N that are

• normalized – 〈φj(t), φj(t)〉 = ‖φj(t)‖2 =

∫ T

0
φ2
j (t) dt = 1,

• orthogonal – 〈φj(t), φj(t)〉 =

∫ T

0
φj(t)φk(t) dt = 0 for j 6= k

• complete – if a signal x(t) is such that

〈φj(t), x(t)〉 =

∫ T

0
φj(t)x(t) dt = 0

for all j , then x(t) = 0.
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Fourier Series

Definition (Fourier series)

Let {φj(t)}j , j ∈ N, be a complete orthonormal set of functions. Then any
well-behaved T -periodic signal x(t) can be uniquely represented as

x(t) =
∞∑
j=0

αjφj(t).

This is called the Fourier series representation of x(t).

The scalars

αj = 〈φj(t), x(t)〉 =

∫ T

0
φj(t)x(t) dt.

are called the Fourier coefficients of x(t) with respect to φj .
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Fourier Series — Proof of αj formula

To derive the formula for αj , write

x(t)φk(t) =
∞∑
j=0

αjφj(t)φk(t)

and then integrate over a period, effectively computing an innter product:

〈φk(t), x(t)〉 =

∫ T

0
φk(t)x(t) dt =

∫ T

0

∞∑
j=0

αjφj(t)φk(t) dt.

For convergent series we can integrate term by term, hence

〈φk(t), x(t)〉 =

∫ T

0

∞∑
j=0

αjφj(t)φk(t) dt =
∞∑
j=0

αj

∫ T

0
φj(t)φk(t) dt =

∞∑
j=0

αjδj ,k = αk
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Fourier Series

Here and in following evaluation we will use Kronecker delta which is defined as
δj ,k = 0 for j 6= k and δk,k = 1 and which indicates that {φj(t)}∞j=0 form an
orthonormal system of functions.

In analogy to vectors in n-dimensional space, you can think of αj as the projection of
x(t) in the direction of φj(t).
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Fourier Series — Partial sum

It can be also proved that, as the functions {φj(t)}∞j=0 form a complete orthonormal
system, the partial sums of the Fourier series

x(t) =
∞∑
j=0

αjφj(t)

converge to x(t) in the following sense (L2-convergence):

lim
N→∞

∫ T

0

x(t)−
N∑
j=0

αjφj(t)

2

dt = 0.
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Fourier Series — Fourier series approximation

Similarly to the case of Taylor polynomial, we can use (with some care for
discontinuities) the partial sum

x(t) ≈
N∑
j=0

αjφj(t)

to approximate x(t).
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Fourier Series — Selection of basis functions

The approach described so far can be used for arbitrary choice of basis {φj(t)}∞j=0 as
long as it is

• complete, and

• orthonormal.

We will now review two most frequently used choices of basis:

• Trigonometric basis (i.e. cosωkt, sinωkt),

• Complex exponential basis (i.e. e jωk t).
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Trigonometric Fourier Series

Definition (Fundamental frequency)
When sampling a signal with sampling period T , the fundamental frequency, ω0, of
the signal is

ω0 =
2π
T
.
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Trigonometric Fourier Series

Definition (Trigonomeric basis)

The sequence of T -periodic functions {φj(t)}∞j=0 defined for k = 1, 2, . . . and
ωk = kω0 by

1. φ0(t) =
1√
T

2. φ2k−1(t) =

√
2
T

cosωkt

3. φ2k(t) =

√
2
T

sinωkt

is complete and orthonormal.
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Trigonometric Fourier Series

Note
Note the first few functional elements of the sequence from the previous slide
(without scaling factors):

{1, cos t, sin t, cos 2t, sin 2t, cos 3t, sin 3t, . . . }
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Trigonometric Fourier Series

Common way of writing down the trigonometric Fourier series of x(t) is following:

x(t) = a0 +
∞∑
k=1

ak cosωkt +
∞∑
k=1

bk sinωkt

The Fourier coefficients can be computed as follows:

1. a0 =
1
T

∫ T

0
x(t) dt

2. ak =
2
T

∫ T

0
x(t) cosωkt dt

3. bk =
2
T

∫ T

0
x(t) sinωkt dt
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Trigonometric Fourier Series

To relate this to the orthonormal representation in terms of the {φj(t)}j∈N and its
Fourier coefficients αj , we note that

1. a0 =
1
T

∫ T

0
x(t) dt =

1√
T

∫ T

0
x(t)

1√
T

dt =
1√
T

∫ T

0
x(t)φ0(t) dt =

1√
T
α0

2. ak = · · ·
3. bk = · · ·

Hence,

x(t) = a0 +
∞∑
k=1

ak cosωkt +
∞∑
k=1

bk sinωkt ≡
∞∑
j=0

αjφj(t).
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Trigonometric Fourier Series

To relate this to the orthonormal representation in terms of the {φj(t)}j∈N and its
Fourier coefficients αj , we note that

1. a0 =
1√
T
α0 ⇐⇒ α0 =

√
Ta0

2. ak = · · ·
3. bk = · · ·

Hence,
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∞∑
k=1

ak cosωkt +
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∞∑
j=0
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Trigonometric Fourier Series
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Trigonometric Fourier Series
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Trigonometric Fourier Series
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Trigonometric Fourier Series
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Trigonometric Fourier Series

To relate this to the orthonormal representation in terms of the {φj(t)}j∈N and its
Fourier coefficients αj , we note that

1. a0 =
1√
T
α0 ⇐⇒ α0 =

√
Ta0

2. ak =

√
2
T
α2k−1 ⇐⇒ α2k−1 =

√
T

2
ak

3. bk =

√
2
T
α2k ⇐⇒ α2k =

√
T

2
bk

Hence,

x(t) = a0 +
∞∑
k=1

ak cosωkt +
∞∑
k=1

bk sinωkt ≡
∞∑
j=0

αjφj(t).

53



Trigonometric Fourier Series — Symmetry

Even symmetry nulls sine coefficients

If x(t) is an even function, i.e., x(t) = x(−t) for all t, then all its sine Fourier
coefficients are zero:

bk =
1
T

∫ T
2

−T
2

x(t) sinωkt dt = 0

Odd symmetry nulls cosine coefficients

If x(t) is an odd function, i.e., x(t) = −x(−t) for all t, then all its cosine Fourier
coefficients are zero:

ak =
1
T

∫ T
2

−T
2

x(t) cosωkt dt = 0
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Trigonometric Fourier Series

Theorem (Fourier series of an even function)

Fourier series of an even function f (t) = f (−t) consists of the constant and cosine
terms

f (t) = a0 +
∞∑
n=1

an cos(nω0t),

where ω0 =
2π
T
.
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Trigonometric Fourier Series

Theorem (Fourier series of an odd function)

Fourier series of an odd function f (t) = −f (−t) consists of the sine terms

f (t) =
∞∑
n=1

bn sin(nω0t),

where ω0 =
2π
T
.
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Trigonometric Fourier Series

Example (Square wave)
Find the trigonometric Fourier series representation of a periodic signal
x(t) = x(t + T ) given by repeating the square wave
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Note, that in this case T = 2. 57



Trigonometric Fourier Series

Solution:

1. the signal has odd symmetry ⇒ all ak = 0

2. bk =
2
T

∫ 1

−1
x(t) sinωkt dt =

2
T

∫ 0

−1
(−1) sinωkt dt +

2
T

∫ 1

0
(+1) sinωkt dt

=
2
T

[
cosωkt

ωk

]0

−1

− 2
T

[
cosωkt

ωk

]1

0

=
1
kπ

[
cosωkt

]0
−1
− 1

kπ

[
cosωkt

]1
0

=
2
kπ

(1− cos(kπ)) =
4
kπ

sin2(
kπ

2
)

3. For k = 2m − 1 is bk =
4
kπ

sin2(
kπ

2
) =

4
(2m − 1)π

4. x(t) =
∞∑

m=1

4
(2m − 1)π

sin((2m − 1)πt)
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Partial sums

xN(t) =
N∑

m=1

4
(2m − 1)π

sin(2m − 1)πt
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0
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Gibbs phenomenon

The Fourier series (over/under)shoots the actual value of x(t) at points of discontinuity
regardless of degree N.
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Complex exponentials

Another useful complete orthonormal set is accomplished by the complex exponentials:

φk(t) =
1√
T

e jkω0t , k ∈ Z

These functions are complex-valued! We have to evaluate the inner product as

〈x1(t), x2(t)〉 =

∫ T

0
x1(t)x∗2 (t) dt,

where x∗2 (t) denotes complex conjugation.
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Complex exponential Fourier series

1. 〈φk(t), φ`(t)〉 =
1
T

∫ T

0
e jωk t · e−jω`t dt = δk,`

2. x(t) =
∞∑

k=−∞
ck e jωk t

3. ck =
1
T

∫ T

0
x(t) e−jωk t dt

4. as in trigonometric case ω0 =
2π
T

, ωk = kω0, ω` = `ω0.

62



Lectue Contents

Signals and Images

Signals and A to D conversion

Vector Spaces for Signals and Images

Linear Combination and Inner Product

Vector space of periodic signals

Complete orthonormal systems of functions

Trigonometric and complex exponential Fourier Series

Matlab project

Home work

63



Matlab Project 2.1 — Sampling a sine function (1/2)

1. Start Matlab and open a new M-file.

2. Consider sampling the function

f (t) = sin(2π(440)t)

on the interval 0 ≤ t < 1, at 8192 points

Hint: Choose sampling interval ∆t = 1/8192 to obtain samples
f (k) = f (k∆t) = sin(2π(440)k/8192) for 0 ≤ k ≤ 8191. The samples can be arranged in
a vector f; you can do this in Matlab with

f = sin(2*pi * 440 * (0:8191)/8192);
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Matlab Project 2.1 — Sampling a sine function (2/2)

Note
The sample vector f is stored in double precision floating point, about 15 significant
digits. However, we’ll consider f as not yet quantized. That is, the individual
components f(k) of f can be thought of as real numbers that vary continuously,
since 15 digits is pretty close to continuous for our purposes.
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Matlab Project 2.1 — Specific tasks and problems

Qestions and tasks:

a) What is the frequency in Hertz of the harmonic function f (t)?

b) Plot the sampled signal with the command plot(f). It probably doesn’t look too
good, as it goes up and down 440 times in the plot range. Plot a smaller range,
say the first 100 samples.

c) At the sampling rate 8192Hz, what is the Nyquist frequency? Is the frequency of
f (t) above or below the Nyquist frequency?

d) Type sound(f) to play the sound out of the computer speaker.
Note: By default, Matlab plays all sound files at 8192 samples per second, and assumes
the sampled audio signal is in the range -1 to 1.
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Matlab Project 2.2 – Aliasing and quantization (1/4)

Consider a second signal

g(t) = sin(2π(8632)t) = sin(2π(440 + 8192)t).

Repeat parts (a) through (d) from previous part with sampled signal

g = sin(2*pi * (440+8192) * (0:8191)/8192);

The analog signal g(t) oscillates much faster than f (t), and we could expect it to yield
a higher pitch. However, when sampled with fs = 8192 Hz, f (t) and g(t) are aliased
and yield precisely the same sampled vectors f and g. They should sound the same too.
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Matlab Project 2.2 – Aliasing and quantization (2/4)

Qestions and tasks:

a) To illustrate the effect of quantization error, construct a 2-bit (4 quantization
levels) version of the audio signal f (t). The command

qf2 = ceil(2 * (f+1))-1;

applied to f produces the quantized signal qf2.

Sample values of f (t) in the ranges (−1,−0.5], (−0.5, 0], (0, 0.5], and (0.5, 1] are
mapped to the integers 0, 1, 2, 3, respectively.

Note that the value -1 will be mapped to -1. Look into find() method or logical

indexing for approaches how to replace all -1 values in qf2 with zeros.
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Matlab Project 2.2 – Aliasing and quantization (3/4)

b) To approximately reconstruct the quantized signal, apply the dequantization
formula to reconstruct f as fr2 using

fr2 = -1 + 0.5 * (qf2+0.5);

This maps the integers 0, 1, 2 and 3 to values −0.75,−0.25, 0.25, and 0.75, respectively.

c) Plot the first hundred values of fr2 with plot(fr2(1:100)).

d) Play the quantized signal with sound(fr2).
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Matlab Project 2.2 – Aliasing and quantization (4/4)

e) Compute the distortion (as a percentage) between the sampled signal vector f and
the dequantized signal vector fr using

ε =
‖f − fr‖2

‖f‖2

The command norm(f) command in MATLAB computes the standard Euclidean norm of

the vector ‖f‖2.
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Matlab Project 2.3 — Half-wave rectified sinusoid

Consider the half-wave rectified sinusoid function,

f (t) =


sin

(
2πt
T

)
if 0 ≤ t ≤ T

2
,

0 if
T

2
≤ t ≤ T .

a) Find the trigonometric Fourier series representation of f (t).
Hint: Calculate the coefficients ak and bk using identities

2 sin `x sinmx = cos(`−m)x − cos(`+ m)x ,

2 sin `x cosmx = sin(`−m)x + sin(`+ m)x .

b) Plot the first 5 components of the Fourier series using Matlab.
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Matlab Project 2.4 — Sawtooth

Consider now the sawtooth function

f (t) = f (t + T ) = t, −T

2
≤ t ≤ T

2
.

a) As the function f (t) is odd, the coefficients ak = 0. Calculate coefficients bk .

b) Plot the first 5 components of the Fourier series using Matlab.

72



Lectue Contents

Signals and Images

Signals and A to D conversion

Vector Spaces for Signals and Images

Linear Combination and Inner Product

Vector space of periodic signals

Complete orthonormal systems of functions

Trigonometric and complex exponential Fourier Series

Matlab project

Home work

73



Assignment 2.1 — Matlab experiment

1. Repeat the quantization process from Project 2 using 4-,5-,6-, and 8-bit
quantization.
Example: 5-bit quantization is accomplished with

qf5 = ceil(16*(f+1))-1

and dequantization with

fr5 = -1 + (qf+0.5)/16

Hint for other quantization levels: Note that 16 = 25−1.

2. Make sure to play the sound in each case.
3. Make up a table showing the number of bits in the quantization scheme, the

corresponding distortion ε, and your subjective rating of the sound quality.
4. At what point can your ear no longer distinguish the original audio signal from the
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Assignment 2.2 — Trigonometric Fourier Series

Consider a periodic function

f (x) = f (x + 2A) = x2, −A ≤ x ≤ A.

1. Calculate the Fourier series for f (x).

2. In Matlab, use subplot() to plot a single figure containing five rows of the first 5
components of the Fourier series for f (x).
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Homework rules

Submit your results by Wednesday, October 14 2020 using the web page
http://zolotarev.fd.cvut.cz/mni

Solution report should be formally correct (structuring, grammar).

Only .pdf files are acceptable. Handwritten solutions and .doc and .docx files will not
be accepted.

Solutions written in TEX (using LyX, Overleaf, whatever) may receive small bonification.
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