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Integrals of trigonometric functions

The derivatives and integrals (as primitive functions) of trigonometric functions are
interconnected:

d
dx

sin `x = ` cos `x ⇒
∫

cos `x dx =
1
`

sin `x ,

d
dx

cos `x = −` sin `x ⇒
∫

sin `x dx = −1
`

cos `x .
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Product of trigonometric functions

Products of two trigonometric functions are expressible as

2 sin `x sinmx = cos(`−m)x − cos(`+ m)x ,

2 cos `x cosmx = cos(`−m)x + cos(`+ m)x ,

2 sin `x cosmx = sin(`−m)x + sin(`+ m)x .

Note

If x ∈ [0, 2π) then for x = ω0t we have t ∈ [0,T ).

We have learnt that trigonometric functions cosωkt and sinωkt form Fourier basis for
T -periodic functions.

Question

Is the basis set of cosmx and sinmx for x ∈ [0, 2π) orthogonal?
4



Orthogonal basis

Assume `,m ∈ N.

We will study the scalar inner products of these functions for ` 6= m first:

〈cos `x , cosmx〉 =

∫ 2π

0
cos `x cosmx dx

=
1
2

∫ 2π

0
cos(`−m)x dx +

1
2

∫ 2π

0
cos(`+ m)x dx

=
1

2(`−m)

[
sin(`−m)x

]2π
0

+
1

2(`+ m)

[
sin(`+ m)x

]2π
0

=
0− 0

2(`−m)
+

0− 0
2(`+ m)

= 0
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Orthogonal basis

〈sin `x , sinmx〉 =

∫ 2π

0
sin `x sinmx dx

=
1
2

∫ 2π

0
cos(`−m)x dx − 1

2

∫ 2π

0
cos(`+ m)x dx

=
1

2(`−m)

[
sin(`−m)x

]2π
0
− 1

2(`+ m)

[
sin(`+ m)x

]2π
0

=
0− 0

2(`−m)
− 0− 0

2(`+ m)
= 0
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Orthogonal basis

〈sin `x , cosmx〉 =

∫ 2π

0
sin `x cosmx dx

=
1
2

∫ 2π

0
sin(`−m)x dx +

1
2

∫ 2π

0
sin(`+ m)x dx

= − 1
2(`−m)

[
cos(`−m)x

]2π
0
− 1

2(`+ m)

[
cos(`+ m)x

]2π
0

= − 1− 1
2(`−m)

− 1− 1
2(`+ m)

= 0
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Orthogonal basis

We will study the case ` = m separately.

〈sinmx , cosmx〉 =
1
2

∫ 2π

0
sin 2mx dx = − 1

4m

[
cos 2mx

]2π
0

= −1− 1
4m

= 0
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Normalization

Finally the two cases of basis functions that should result in inner product being 1 if
normalised.

〈cosmx , cosmx〉 =

∫ 2π

0
cos2 mx dx =

∫ 2π

0

1 + cos 2mx

2
dx

=
1
2

[
x
]2π
0

+
1
2m

[
sin 2mx

]2π
0

|| cosmx ||2 = π ‖ cosmω0t‖2 =
T

2

〈sinmx , sinmx〉 =

∫ 2π

0
sin2 mx dx =

∫ 2π

0

1− cos 2mx

2
dx

=
1
2

[
x
]2π
0
− 1

2m

[
sin 2mx

]2π
0

|| sinmx ||2 = π ‖ sinmω0t‖2 =
T
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Trigonometric Fourier Series

1. T -periodic signal x(t) representation:

x(t) = a0 +
∞∑
k=1

ak cos(kω0t) +
∞∑
k=1

bk sin(kω0t)

2. basis vectors cos(kω0t), sin(kω0t)

3. a0 =
1
T

∫ T

0
x(t) dt, ak =

(x(t), cos(kω0t))

(cos(kω0t), cos(kω0t))
≡ 2

T

∫ T

0
x(t) cos(kω0t) dt

4. bk =
(x(t), sin(kω0t))

(sin(kω0t), sin(kω0t))
≡ 2

T

∫ T

0
x(t) sin(kω0t) dt
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Continuous signal and basis vectors

1. T -periodic signal representation x(t) =
∞∑

k=−∞
ck exp(j kω0t)

2. basis vector φk(t) = exp(j kω0t)

3. scalar product ck =
(x(t), φk(t))

(φk(t), φk(t))
≡ 1

T

∫ T

0
x(t) exp(−j kω0t))dt

4. completness of basis vectors

(φk(t), φ`(t)) =
1
T

∫ T

0
exp(j kω0t) exp(−j `ω0t)dt = δk,`
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Continuous signal and basis vectors

1. Fourier series x(t) =
∞∑

k=−∞
cke jωk t

2. Partial sum of Fourier Series xN(t) =
M∑

k=−M
cke jωk t for N = 2M + 1
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Dirichlet kernel

Definition (Dirichlet kernel)
Dirichlet kernels are the partial sums of exponential functions

DM(ω0t) =
M∑

k=−M
exp(j kω0t) = 1 + 2

M∑
k=1

cos(kω0t).

Show that DM(ω0t) =
sin((M + 1/2)ω0t)

sin(ω0t/2)
.
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Dirichlet kernel

Theorem (Convolution of Dirichlet kernel)

The convolution of DM(t) with an arbitrary T -periodic function f (t) = f (t + T ) is
the M-th degree Fourier series approximation to f (t).

DM(t) ∗ f (t) ≡ 1
T

∫ T/2

−T/2
DM(t − τ)f (τ)dτ =

M∑
k=−M

ck exp(j kω0t),

where ck =
1
T

∫ T/2

−T/2
f (t) exp(−j kω0t) dt.
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From continous to discrete periodic signal

Consider a continuous signal x(t) defined as T -periodical signal, sampled N times
during that period at timestamps t = nT/N for n = 0, 1, 2, . . . ,N − 1. This yields a
discretised signal

x = (x0, x1, x2, . . . , xN−1)

where x is a vector in RN with N components xn = x(nT/N).

The sampled signal x = (x0, x1, x2, . . . , xN−1) can be extended periodically with period
N by modular definition

xm = x(mmodN)

for all m ∈ Z.
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Discrete signal and basis vectors

In order to form the discrete basis vectors we start with exponential basis

φk(t) = e jωk t = e j2πkt/T

and substitute t → nT/N yielding N components of the basis vector in CN

φk,n ≡ φk
(
nT

N

)
= e j2πkn/N .
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Discrete signal and basis vectors

The k-th basis vector has the following complex components:

φk =


e j2πk·0/N

e j2πk·1/N

e j2πk·2/N

...
e j2πk·(N−1)/N
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DFT basis — Scaling factor ||φk ||2

On Cn the usual inner product is defined as

〈x, y〉 = xTy = x1y1 + x2y2 + . . .+ xnyn

The corresponding norm is

||x||2 = 〈x, x〉 = x1x1 + x2x2 + · · ·+ xnxn = |x1|2 + |x1|2 + · · ·+ |xn|2

which translates for our basis vector to

||φk ||2 = φk,0φk,0 + φk,1φk,1 + · · ·+ φk,N−1φk,N−1 = 1 + 1 + . . .+ 1

as φk,n = e−j2πkn/N is a complex conjugate to φk,n = ej2πkn/N and therefore
φk,nφk,n = 1, which results in the scaling factor being

||φk ||2 = N

.
20



DFT basis — Orthogonality

We can prove that basis vectors φk are orthogonal by verifying that 〈φ`,φm〉 = 0 for
all ` 6= m:

〈φ`,φm〉 =
N−1∑
ν=0

φ`,νφm,ν =
N−1∑
ν=0

e j2π(`−m)ν/N =

=
N−1∑
ν=0

(
e j2π(`−m)/N

)ν
.

We have arrived at partial sum of the first N elements for geometric series.

For ` 6= m we have

〈φ`,φm〉 =
1−

(
e j2π `−m

N

)N
1− e j2π(`−m)/N

=
1− e j2π(`−m)

1− e j2π(`−m)/N
=

1− 1
1− e j2π(`−m)/N

= 0
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From Fourier Series to Discrete Fourier Transform

Strang (2000):
The Fourier series is linear algebra in infinite dimensions. The “vectors” are
functions f (t); they are projected onto the sines and cosines; that produces the
Fourier coefficients ak and bk . From this infinite sequence of sines and cosines,
multiplied by ak and bk , we can reconstruct f (t). That is the classical case,
which Fourier dreamt about, but in actual calculations it is the discrete Fourier
transform that we compute. Fourier still lives, but in finite dimensions.
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Definition of the DFT and IDFT

1. Let x ∈ CN be a vector (x0, x1, x2, . . . , xN−1). The discrete Fourier transform
(DFT) of x is the vector X ∈ CN with components

Xk = 〈x,Φk〉 =
N−1∑
m=0

xm e−j2πkm/N .

2. Let X ∈ CN be a vector (X0,X1,X2, . . . ,XN−1). The inverse discrete Fourier
transform (IDFT) of X is the vector x ∈ CN with components

xk =
〈X,Φ−k〉
〈Φk ,Φk〉

=
1
N

N−1∑
m=0

Xm e j2πkm/N .
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DC coefficient X0

The coefficient X0/N measures the contribution of the basic waveform (1, 1, 1, . . . , 1)

to x. In fact
X0

N
=

1
N

N−1∑
m=0

xm

is the average value of x.This coefficient is usually called as the DC coefficient, because
it measures the strength of the direct current component of a signal.
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Fourier Transform

The Fourier Transform can be defined for signals that are

• Discrete or continuous in time

• Finite or infinite duration

• Provided we denote the variable in time domain as x(t), or x(n), the transformed
variables in frequency domain are correspondingly X (jω) or X (k).

This unification results in four cases.
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An overview of Fourier transforms
continuous in time discrete in time

periodic in frequency

in
fr
eq

ue
nc

y

x(t) =
1

2π

∞∫
−∞

X (jω)ejωtdω x(n) =
T

2π

+π/T∫
−π/T

X (ejωT )ejkωT dω

co
nt

in
uo

us

X (jω) =

∞∫
−∞

e−jωtx(t)dt X (ejωT ) =
∞∑

n=−∞
x(n)e−jkωT

Fourier transform Fourier transform t = nT (DTFT)

in
fr
eq

ue
nc

y

in
ti
m

e

x(t) =
∞∑

k=−∞
X (k)ejkω0t x(n) =

1

N

N−1∑
k=0

X (k)e(j2π/N)kn

di
sc

re
te

pe
ri
od

ic

X (k) =
ω0

2π

π/ω0∫
−π/ω0

x(t)e−jnω0tdt X (k) =
N−1∑
n=0

x(n)e−(j2π/N)kn

Fourier series Discrete Fourier transform (DFT) 27



An overview of discrete Fourier Transform

The DFT consists of inner products of the input sequence x [n] with sampled complex
sinusoidal sections

wkn
N = e j2πnk/N

yielding

Xk = 〈x,wk〉 = xTwk =
N−1∑
m=0

xm e−j2πkm/N , k = 0, 1, 2, . . . ,N − 1.
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An overview of discrete Fourier Transform

By collecting the DFT output samples into a column vector, we have


X0

X1

X2
...

XN−1


︸ ︷︷ ︸

X

=



1 1 1 · · · 1

1 w1
N w2

N · · · wN−1
N

1 w2
N w4

N · · · w
2(N−1)
N

...
...

...
. . .

...

1 wN−1
N w

2(N−1)
N · · · w

(N−1)(N−1)
N


︸ ︷︷ ︸

W∗N


x0

x1

x2
...

xN−1


︸ ︷︷ ︸

x

Finally we can write matrix representation as

X = W∗N x.
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An overview of discrete Fourier Transform

The matrix W∗N = (WN)T denotes the Hermitian transpose of the complex matrix WN .
It can be shown that

W∗N ×WN =


N 0 0 · · · 0
0 N 0 · · · 0
0 0 N · · · 0
...

...
...

...
...

0 0 0 · · · N

 = N · 1

and consequently the inversion of the Eq. (29) is

x =
1
N
WNX.
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Some practical comments

If the number of digital samples in each time slice is a power of 2, one can use a faster
version of the DFT known as the fast Fourier transform (FFT)

The FFT assumes that the samples being analyzed comprise one cycle of a periodic
wave. In most cases it is not the case and analysis will contain many spurious
frequencies not actually present in the signal.

Sample fast enough and long enough!

To recognize details in frequency domain use spectral interpolation.
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What is aliasing?

It is easiest to describe in terms of a visual sampling:

We all know and love movies. If you have ever watched a western and seen the wheel of
a rolling wagon appear to be going backwards, you have witnessed aliasing. The
movie’s frame rate is not adequate to describe the rotational frequency of the wheel,
and our eyes are deceived by the misinformation.

The Nyquist Theorem tells us that we can successfully sample and play back frequency
components up to one-half the sampling frequency.

Aliasing is the term used to describe what happens when we try to record and play back
frequencies higher than one-half the sampling rate.
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What is aliasing?

Consider a digital audio system with a sample rate of 48 KHz, recording a steadily
rising sine wave tone. At lower frequency, the tone is sampled with many points per
cycle. As the tone rises in frequency, the cycles get shorter and fewer and fewer points
are available to describe it. At a frequency of 24 KHz, only two sample points are
available per cycle, and we are at the limit of what Nyquist says we can do.

Still, those two frequency points are adequate, in a theoretical world, to recreate the
tone after conversion back to analog and low-pass filtering.
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What is aliasing?

But, if the tone continues to rise, the number of samples per cycle is not adequate to
describe the waveform, and the inadequate description is equivalent to one describing a
lower frequency tone – this is aliasing.

In fact, the tone seems to reflect around the 24KHz point:

• A 25KHz tone becomes indistinguishable from a 23KHz tone.

• A 30KHz tone becomes an 18KHz tone.
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Aliasing due to insufficient sampling

The following figure illustrates what happens if a signal is sampled at regular time
intervals that are slightly below the period of the original signal.
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−1

0
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n

2π
·1
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Zero padding

Zero padding consists of appending zeros to a signal. It maps a length N signal to a
length M > N signal. M does not need to be an integer multiple of N.

Zero padding in the time domain gives spectral interpolation in the frequency domain.

Similarly, zero padding in the frequency domain gives bandlimited interpolation in the
time domain. This is how ideal sampling rate conversion is accomplished.

Usually we use FFT which requires signals of length M = 2m which means we chose the
number of zeros equal to 2m − N.
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Zero padding: How does it work?
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Hanning window of 32 samples
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Sampling and Aliasing

Definition (Nyquist-Shannon Sampling Theorem, 1927)
It is possible precisely to reconstruct a continuous-time signal from its samples, given
that

1. the signal is bandlimited;

2. the sampling frequency fs is greater than twice the signal bandwidth.
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Aliasing in Audio

• The initial sound is a numerically synthesized piano-tone at 440Hz. The sampling
frequency is of 44.1 kHz (CD-quality).
• The harmonic frequencies at multiple of the fundamental tone (440Hz) are clearly

visible.
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Aliasing in Audio

• The sound will be resampled at 2 kHz, without precautions against aliasing. The
tone sounds rather strange.
• The aliasing is visible on the graphs as a “warping” of the frequencies against a

“mirror” at the Nyquist frequency 1 kHz.
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Aliasing in Audio

• In order to avoid aliasing, the spectrum of the signal should be zero at frequencies
higher than the Nyquist frequency before resampling. A low-pass filter is used to
achieve this
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Aliasing and DFT

. . . for a digital signal processing with DFT there are limits:

• The signal must be band-limited. This means there is a frequency above which the
signal is zero.
• Hence the maximum useable frequency in the DFT is fs/2 - the Nyquist1

frequency!

1Harry Nyquist 1889-1976 43
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Nonlocality of DFT

DFT assumes signal is stationary. It cannot detect local frequency changes.

Example (Frequency hop)

Consider two different periodic signals f (t) and g(t) defined on 0 ≤ t < 1 with
frequencies f1 = 96Hz and f2 = 235Hz as follows:

• f (t) = 0.5 sin(2πf1t) + 0.5 sin(2πf2t)

• g(t) =

sin(2πf1t) for 0 ≤ t < 0.5,

sin(2πf2t) for 0.5 ≤ t < 1.0.

Use the sampling frequency fs = 1000Hz to produce sample vectors f and g.
Compute the DFT of each sampled signal.
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Nonlocality of DFT

Two different signals f (t) and g(t) are constructed with Matlab commands

Fs = 1000; % sampling frequency
f1 = 96;
f2 = 235;
t1 = (0:499)/Fs; % time samples for ‘g1‘
t2 = (500:999)/Fs; % time samples for ‘g2‘
t = [t1 t2]; % time samples for ‘f‘
f = 0.5*sin(2*pi*f1*t)+0.5*sin(2*pi*f2*t);
g1 = [sin(2*pi*f1*t1) zeros(1,500)];
g2 = [zeros(1,500) sin(2*pi*f2*t2)];
g = g1+g2;
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Magnitude of DFT for f (t) and g(t)
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Nonlocality of DFT

• It is obvious that each signal contains dominant frequencies close to 96Hz and
235Hz and the magnitudes are fairly similar.

• But: The signals f (t) and g(t) are quite different in the time domain!

• The example illustrates one of the shortcomings of traditional Fourier transform:
nonlocality or global nature of the basis vectors wN or its constituting analog
waveforms e j2πkt/T .
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Detail of signal g(t)
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Nonlocality of DFT

Summary:

• Discontinuities are particularly troublesome.

• The signal g(t) consists of two sinusoids only, but the excitation of several Gks in
frequency domain around the dominant frequencies gives the impression that the
entire signal is more oscillatory.

• We would like to have possibility to localize the frequency analysis to smaller
portions for the signal.

These requirements led to development of windowed version of Fourier transform — the
short time Fourier transform, STFT.
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Windowing

Consider a sampled signal x ∈ CN , indexed from 0 to N − 1. We wish to analyse the
frequencies present in x, but only within a certain time range. We choose integers
m ≥ 0 and M such that m + M ≤ N and define a vector w ∈ CN as

wk =

1 for m ≤ k ≤ m + M − 1

0 otherwise

We use w to define a new vector y with components

yk = wkxk for 0 ≤ k ≤ N − 1.

We use notation y = wx and refer to the vector w as the (rectangular) window.
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Windowing

Proposition

Let x and w be vectors in CN with discrete Fourier transforms X and W, respectively.
Let y = wx have DFT Y. Then

Y =
1
N
X ∗W,

where ∗ is circular convolution in CN .

Definition (Circular convolution)
The n-th element of an N-point circular convolution of N-periodic vectors X and W is

Yn =
1
N

N−1∑
m=0

XmW(n−m)modN .
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Windowing

When processing a non-stationary signal we assume that the signal is short-time
stationary and we perform a Fourier transform on these small blocks — we multiple the
signal by a window function that is zero outside the defined “short-time” range.

Definition (Rectangular window)
The rectangular window is defined as:

wn =

1 for 0 ≤ n < N

0 otherwise

The Matlab command rectwin(N) produces the N-point rectangular window.
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Windowing

Definition (Hamming window)
The most common windowing function in speech analysis is the Hamming window:

wn =

0.54 + 0.46 cos
(

2πn
N−1

)
for 0 ≤ n < N

0 otherwise

Matlab command hamming(N) produces the N-point Hamming window.
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Windowing

Definition (Blackman window)
Another common type of window is the Blackman window:

wn =

0.42 + 0.5 cos
(

2πn
N−1

)
+ 0.08 cos

(
4πn
N−1

)
for 0 ≤ n < N

0 otherwise

Use blackman(N) to produce the N-point Blackman window.
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Windowing result
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Matlab Session 3.1 — Application of the DFT

Consider the analog signal

x(t) = 2.0 cos(2π 5t) + 0.8 sin(2π 12t) + 0.3 cos(2π 47t)

on the interval t ∈ (0, 1). Sample this signal with period T = 1/128 s and obtain
sample vector x = (x0, x1, x2, . . . , x127).

a) Make MATLAB m-file which plots signals x(t) and x

b) Using definition of the DFT find X.

c) Use MATLAB command fft(x) to compute DFT of X.

d) Make MATLAB m-file which computes DFT of x and plots signal and its spectrum.

e) Compute IDFT of the X and compare it with the original signal x(t).
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Matlab Session 3.1 — Input signal plots
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Matlab Session 3.1 — Solution (1/2)

clear
% plots original and sampled signal
t = linspace(0,1,1001);
x = 2.0*cos(2*pi*5*t) + 0.8*sin(2*pi*12*t) + 0.3*cos(2*pi*47*t);
N = 128; % number of samples
tdelta = 1/N; % sampling period
ts(1) = 0;
xs(1) = x(1);
for k = 2:N
ts(k) = (k-1)*tdelta;
xs(k) = 2.0*cos(2*pi*5*(k-1)*tdelta) + ...

0.8*sin(2*pi*12*(k-1)*tdelta) + ...
0.3*cos(2*pi*47*(k-1)*tdelta);

end
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Matlab Session 3.1 — Solution (2/2)

figure(1);
subplot(2,1,1);
plot(t,x,’LineWidth’,2.5,’Color’,[1 0 0]);
grid on;
subplot(2,1,2);
plot(ts, xs,’o’,’LineWidth’,2.0,’Color’,[0 0 1]);
hold on;
plot(t,x,’--’,’Color’,[1 0 0]);
grid on;
legend(’Discrete␣signal␣x(n)’,’Continuous␣signal␣x(t)’);
hold off;
pause
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Matlab Session 3.2 — Windowing (1/3)

Consider signal f (t) = sin(2πf1t) + 0.4 sin(2πf2t) defined on 0 ≤ t ≤ 1 with
frequencies f1 = 137Hz and f2 = 147Hz:

a) Use Matlab to sample f (t) at N = 1000 points tk = {k/fs}Nk=0 with sampling
frequency fs = 1000Hz

N = 1000; % number of samples
Fs = 1000; % sampling frequency
f1 = 137; % 1. frequency
f2 = 147; % 2. frequency
tk = (0:(N-1))/Fs; % sampling times
f = sin(2*pi*f1*tk) + 0.4*sin(2*pi*f2*tk); % sampled signal
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Matlab Session 3.2 — Windowing (2/3)

b) Compute the DFT of the signal with F=fft(f) resp. F=fft(f,N).
Consult the Matlab documentation and explain the difference!

c) Display the magnitude of the Fourier transform with plot(abs(F(0:501))

d) Construct a rectangular windowed version of f (n) for window length 200 with

fwa = f;
fwa(201:1000) = 0.0;

e) Compute the DFT of fwa and display the magnitude of the first 501 components.

f) Can you distinguish the two constituent frequencies?
Be careful: is it really obvious that the second frequency is not a side lobe leakage?
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Matlab Session 3.2 — Windowing (3/3)

g) Construct a windowed version of f (n) of length 200 with

fwb = f(1:200);

h) Compute the DFT and display the magnitude of the first 101 components.
i) Can you distinguish the two constituent frequencies? Compare the plot of fwb

with the DFT of fwa.
j) Repeat the parts d–h using other window lengths such as 300, 100 or 50. How

short can the time window be and still allow resolution of the two constituent
frequencies?

k) Does it matter whether we treat the windowed signal as a vector of length 1000 as
in part 4 or shorter vector as in part 7? Does the side lobe energy confuse the
results?
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Matlab Session 3.3 — Zero padding (1/3)

Using reasonable resolution in frequency domain with zero padding in the time domain,
determine the frequency of the periodic signal defined as

xs = sin(32.044245t) + sin(37.070793t).

The discrete signal has only 32 samples xn produced by sampling frequency f0 = 1/32.
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Matlab Session 3.3 — Zero padding (2/3)

clear
t = linspace(0,1,1001);
xs = sin(32.044245*t)+sin(37.070793*t);
N = 32;
f0 = 1/N;
k = 0:1:N-1;
x1 = sin(32.044245*f0*k) + sin(37.070793*f0*k);
figure(1)
subplot(3,1,1)
plot(t,xs,’LineWidth’,1.5,’Color’,[1 0 0]);
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Matlab Session 3.3 — Zero padding (3/3)

% Second row, make the lenghth 64 samples
subplot(3,1,2)
xfa_64 = abs(fft([x1 zeros(1,32)]));
plot(xfa_64); hold on;
stem(xfa_64); hold off;
% Third row, make the length 512 samples
xfa_512 = abs(fft([x1 zeros(1,32)]));
plot(xfa_512); hold on;
stem(xfa_512); hold off;
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Matlab Session 3.4 — Steam whistle (1/3)

a) Start MATLAB. Load in the “train” signal with command load(’train’). Note that
the audio signal is loaded into a variable y and the sampling rate into Fs.
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Matlab Session 3.4 — Steam whistle (2/3)

b) The sampling rate is 8192Hz, and the signal contains 12 880 samples. If we consider
this signal as sampled on an interval (0,T ), then T = 12880/8192 ≈ 1.5723 seconds.

c) Compute the DFT of the signal with Y=fft(y). Display the magnitude of the Fourier
transform with plot(abs(Y))
The DFT is of length 12 880 and symmetric about center.

d) Since MATLAB indexes from 1, the DFT coefficient Yk is actually Y(k+1) in
MATLAB !

e) You can plot only the first half of the DFT with plot(abs(Y(1:6441)).

f) Compute the actual value of each significant frequency in Herz. Use the data cursor on
the plot window to pick out the frequency and amplitude of three largest components.
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Matlab Session 3.4 — Steam whistle (3/3)

g) Denote these frequencies f1, f2, f3, and let A1,A2,A3 denote the corresponding
amplitudes. Define these variables in MATLAB.

h) Synthetize a new signal using only these frequencies, sampled at 8192 Herz on the
interval (0, 1.5) with

t=[0:1/8192:1.5];
ys=(A1*sin(2*pi*f1*t)+ ...
A2*sin(2*pi*f2*t)+A3*sin(2*pi*f3*t))/(A1+A2+A3);

i) Play the original train sound with sound(y) and the synthesized version sound(ys).
Compare the quality!

j) Can you explore another frequency components? If it is so, follow the steps g) – i) and
listen to the result.
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Matlab Session 3.4 — Steam whistle (4/3)

We can study a simple approach to compressing an audio signal:

The idea is to transform the audio signal in the frequency domain with DFT and then
to eliminate the insignificant frequencies by thresholding, i.e. by zeroing out any Fourier
coefficients below a given threshold. This becomes a compressed version of the signal.
To recover an approximation to the signal, we use inverse DFT to take the limited
spectrum back to the time domain.
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Matlab Session 3.4 — Steam whistle (5/3)

k) Thresholding: Compute the maximum value of Yk with m=max(abs(Y)). Choose a
thresholding parameter ∈ (0, 1), for example, thresh=0.1

l) Zero out all frequencies in Y that fall below a value thresh*m. This can be done with
logical indexing or e.g. with

Ythresh=(abs(Y)>m*thresh).*Y;

Plot the thresholded transform with plot(abs(Ythresh)).

m) Compute the compression ratio as the fraction of DFT coefficients which survived the
cut, sum(abs(Ythresh)>0)/12880.

n) Recover the original time domain with inverse transform yt=real(ifft(Ytresh))
and play the compressed audio with sound(yt). The real command truncates
imaginary round-off error in the ifft procedure.
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Matlab Session 3.4 — Steam whistle (6/3)

o) Compute the distortion (as a percentage) of the compressed signal using formula

ε =
‖y − yt‖2
‖y‖2

Note: The norm(y) command in MATLAB computes ‖y‖, the standard Euclidean norm of

the vector y.

p) Repeat the computation for threshold values thresh=0.5, thresh=0.05 and
thresh=0.005. In each case compute the compression ratio, the distortion, and play
the audio signal and rate its quality.
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Assignment — Analysis of audio signal

• Start MATLAB. Load in the “ding” audio signal with command
y=wavread(’ding.wav’); The audio signal is stereo one and can be decoupled into
two channels by y1=y(:,1); y2=y(:,2);. The sampling rate is 22 050 Herz, and the
signal contains 20 191 samples. If we consider this signal as sampled on an interval
(0,T ), then T = 20191/22050 ≈ 0.9157 seconds.

• Compute the DFT of the signal with Y1=fft(y1); and Y2=fft(y2);. Display the
magnitude of the Fourier transform with plot(abs(Y1)) or plot(abs(Y2)). The
DFT is of length 20 191 and symmetric about center.
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Assignment — Analysis of audio signal

• Since MATLAB indexes from 1, the DFT coefficient Yk is actually Y(k+1) in MATLAB
! Also Yk corresponds to frequency k/T = k/0.9157 and so Y(k+1) corresponds to
fk = (k − 1)/T = (k − 1)/0.9157.

• You can plot only the first half of the DFT with plot(abs(Y1(1:6441))) or
plot(abs(Y2(1:6441))). Use the data cursor button on plot window to pick out the
frequency and amplitude of the two (obviously) largest components in the spectrum.
Compute the actual value of each significant frequency in Herz.
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Assignment — Analysis of audio signal

• Let f1, f2 denote these frequencies in Herz, and let A1,A2 denote the corresponding
amplitudes from the plot. Define these variables in MATLAB.

• Generate a new signal using only these frequencies, sampled at 22 050 Herz on the
interval (0, 1) with

t = [0:1/22050:1];
y12 = (A1*sin(2*pi*f1*t) + A2*sin(2*pi*f2*t))/(A1+A2)

• Play the original sound with sound(y1) and the synthesized version sound(y12).
Repeat the experiment with sound of the second channel sound(y2). Note that our
synthesis does not take into account the phase information at these frequencies.

• Does the artificial generated signal reproduce ding.wav correctly? Compare the quality!

77



Assignment — Analysis of audio signal

1. Repeat the parts a)–k) from the lecture project, but this time using a triangular
window.

2. A triangular window vector w of length L = 201 can be constructed using

L = 201;
w = triang(L);

3. Construct a windowed signal of the length 1000 as

fwc = zeros(size(f));
fwc(1:L)=f(1:L).*w;

and compute its spectrum using fft(fwc).
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Assignment — Analysis of audio signal

4. Try varying the window length L. What is the shortest window that allows you to
distinguish the two frequencies?

5. Repeat the previous parts 1–10 for the Hamming window.

6. Submit the answers for the several questions raised in parts 1–16 as a written
Report on Window Functions by November 20, 2019.
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Homework rules

Submit your results by Wednesday, October 21 2020 using the web page
http://zolotarev.fd.cvut.cz/mni

Solution report should be formally correct (structuring, grammar).

Only .pdf files are acceptable. Handwritten solutions and .doc and .docx files will not
be accepted.

Solutions written in TEX (using LyX, Overleaf, whatever) may receive small bonification.
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