
Introduction to Neural Networks
Mathematical Tools for ITS (11MAI)

Mathematical tools, 2020

Jan Přikryl

11MAI, lecture 10
Monday, December 07, 2020
version: 2020-12-07 10:05

Department of Applied Mathematics, CTU FTS

1



Linear Models

• We used before weighted linear combination of feature values hj and weights λj

y = σ(λ, di ) =
∑
j

λjhj(di )

• Such models can be illustrated as a “network”

y

h1

h2

h3

h4

h5

h6

λ1

λ6

2



Limits of Linearity

• We can give each feature a weight

• But not more complex value relationships, e.g.,

• any value in the range [0; 5] is equally good
• values over 8 are bad
• higher than 10 is not worse

3



XOR

Linear models cannot model XOR-like behaviour:

1

1

0

0

4



XOR

Linear models cannot model XOR-like behaviour:

1

1

0

0

4



Multiple Layers

Solution: Add an intermediate (“hidden”) layer of processing (each arrow is a weight)

y

5



XXX

• Have we gained anything so far?

6



Non-Linearity

• Instead of computing a linear combination

σ(λ, di ) =
∑
j

λjhj(di )

• Add a non-linear function

σ(λ, di ) = f

∑
j

λjhj(di )


• Popular choices (“sigmoid” ≡ the logistic function)

−5 0 5
−1
0

1

tanh(x)

−5 0 5
0

0.5

1

sgmd(x)

−5 0 5
0
2
4

relu(x)

7



Deep Learning

More layers = deep learning

y

8



What Depths Holds

We can interpret the deep NN as follows:

• Each layer is a processing step

• Having multiple processing steps allows complex functions

• Metaphor: NN and computing circuits

• computer = sequence of Boolean gates
• neural computer = sequence of layers

• Deep neural networks can implement complex functions e.g. sorting on input values

But in fact, a trained NN is just a clever lookup table.

9



Example

10



Simple Neural Network

11

4.5

-5.2

-2.0

-3.7

3.7

-1.
5

2.9

2.9

-4.6

• One innovation: bias units (no inputs, always value 1)

11



Simple Neural Network

11

4.5

-5.2

-2.0

-3.7

3.7

-1.
5

2.9

2.9

-4.6

1

0

• Try out two input values

• Hidden unit computation

sgmd(1.0× 3.7 + 0.0× 3.7 + 1×−1.5) = sgmd(2.2) =
1

1 + e−2.2
= 0.90

sgmd(1.0× 2.9 + 0.0× 2.9 + 1×−4.5) = sgmd(−1.6) =
1

1 + e−1.6
= 0.17

11



Simple Neural Network

11

4.5

-5.2

-2.0

-3.7

3.7

-1.
5

2.9

2.9

-4.6

1

0

0.90

0.17

• Try out two input values

• Hidden unit computation

sgmd(1.0× 3.7 + 0.0× 3.7 + 1×−1.5) = sgmd(2.2) =
1

1 + e−2.2
= 0.90

sgmd(1.0× 2.9 + 0.0× 2.9 + 1×−4.5) = sgmd(−1.6) =
1

1 + e−1.6
= 0.17

11



Simple Neural Network

11

4.5

-5.2

-2.0

-3.7

3.7

-1.
5

2.9

2.9

-4.6

1

0

0.90

0.17

• Output unit computation

sgmd(0.90× 4.5+ 0.17× (−5.2) + 1× (−2.0)) = sgmd(1.17) =
1

1 + e−1.17 = 0.76

11



Simple Neural Network

11

4.5

-5.2

-2.0

-3.7

3.7

-1.
5

2.9

2.9

-4.6

1

0

0.90

0.17

• Output unit computation

sgmd(0.90× 4.5+ 0.17× (−5.2) + 1× (−2.0)) = sgmd(1.17) =
1

1 + e−1.17 = 0.76

11



Output for all Binary Inputs

Input x0 Input x1 Hidden h0 Hidden h1 Output y0

0 0 0.12 0.02 0.18→ 0
0 1 0.88 0.27 0.74→ 1
1 0 0.73 0.12 0.74→ 1
1 1 0.99 0.73 0.33→ 0

• Network implements XOR
• hidden node h0 is OR
• hidden node h1 is AND
• final layer operation is h0 − (−h1)

• Power of deep neural networks: chaining of processing steps just as: more Boolean
circuits → more complex computations possible

12



Why “neural” networks?

13



Neuron in the Brain

• The human brain is made up of about 100 billion neurons
Dendrite Axon terminal
Soma
Axon Nucleus

• Neurons receive electric signals at the dendrites and send them to the axon

14



Neural Communication

• The axon of the neuron is connected to the dendrites of many other neurons
Neurotransmitter
Synaptic vesicle Neurotransmitter transporter Axon terminal Voltage gated Ca++
channel
Receptor Postsynaptic density Synaptic cleft
Dendrite

15



The Brain vs. Artificial Neural Networks

• Similarities

• Neurons, connections between neurons
• Learning = change of connections, not change of neurons
• Massive parallel processing

• But artificial neural networks are much simpler

• computation within neuron vastly simplified
• discrete time steps
• typically some form of supervised learning with massive number of stimuli

16



2

back-propagation training

17



Error

11

4.5

-5.2

-2.0

-3.7

3.7

-1.
5

2.9

2.9

-4.6

1

0

0.90

0.17

The output is not exact

• Computed output: y = 0.76

• Correct output: t = 1.0

• How do we adjust the weights?

18



Key Concepts

• Gradient descent

• error is a function of the weights
• we want to reduce the error
• gradient descent: move towards the error minimum
• compute gradient → get direction to the error minimum
• adjust weights towards direction of lower error

• Back-propagation

• first adjust last set of weights
• propagate error back to each previous layer
• adjust their weights

19



Gradient Descent

20



Gradient Descent

r̂0

r̂1

r̂2

r̂3

r̂4

r̂5

21



Derivative of Sigmoid

• Sigmoid function: sgmd(x) =
1

1 + e−x
• Derivative

d
dx

sgmd(x) =
d
dx

1
1 + e−x

=
(1− e−x)× 0− 1× (−e−x)

(1 + e−x)2

=
1

1 + e−x
· e−x

1 + e−x

=
1

1 + e−x

(
1− 1

1 + e−x

)
= sgmd(x) (1− sgmd(x))

22



Final Layer Update (numbers here)

• Linear combination of weights s =
∑

k wkhk

• Activation function y = sgmd(s)

• Error (L2 norm) E = (t − y)2/2

• Derivative of error with regard to one weight wk

dE
dwk

=
dE
dy

dy
ds

ds
dwk

23



Final Layer Update (numbers here)

• Linear combination of weights s =
∑

k wkhk

• Activation function y = sgmd(s)

• Error (L2 norm) E = (t − y)2/2

• Derivative of error with regard to one weight wk

dE
dwk

=
dE
dy

dy
ds

ds
dwk

• Error E is defined with respect to y

dE
dy

=
d
dy

1
2

(t − y)2 = −(t − y)

23



Final Layer Update (numbers here)

• Linear combination of weights s =
∑

k wkhk

• Activation function y = sgmd(s)

• Error (L2 norm) E = (t − y)2/2

• Derivative of error with regard to one weight wk

dE
dwk

=
dE
dy

dy
ds

ds
dwk

• y with respect to x is sgmd(s):

dy
ds

=
d
ds

sgmd(s) = sgmd(s) (1− sgmd(s)) = y (1− y)

23



Final Layer Update (numbers here)

• Linear combination of weights s =
∑

k wkhk

• Activation function y = sgmd(s)

• Error (L2 norm) E = (t − y)2/2

• Derivative of error with regard to one weight wk

dE
dwk

=
dE
dy

dy
ds

ds
dwk

• x is a weighted linear combination of hidden node values hk

ds
dwk

=
d

dwk

∑
k

wkhk = hk

23



Putting it All Together

• Derivative of error with regard to one weight wk

dE
dwk

=
dE
dy

dy
ds

ds
dwk

= −(t − y)y(1− y)hk

• error
• derivative of sigmoid: y ′

• Weight adjustment will be scaled by a fixed learning rate µ:

∆wk = µ (t − y) y ′ hk

24



Multiple Output Nodes

• Our example only had one output node

• Typically neural networks have multiple output nodes

• Error is computed over all j output nodes

E =
∑
j

1
2

(tj − yj)
2

• Weights k → j are adjusted according to the node they point to

∆wj←k = µ(tj − yj)y
′
j hk

25



Hidden Layer Update

• In a hidden layer, we do not have a target output value

• But we can compute how much each node contributed to downstream error

• Definition of error term of each node

δj = (tj − yj)y
′
j

• Back-propagate the error term (why this way? there is math to back it up . . . )

δi =

∑
j

wj←iδj

 y ′i

• Universal update formula
∆wj←k = µδjhk

26



Our Example

11

4.5

-5.2

-2.0

-3.7

3.7

-1.
5

2.9

2.9

-4.6

1

0

0.90

0.17

• Computed output: y = 0.76
• Correct output: t = 1.0
• Final layer weight updates (learning rate µ = 10)

• δG = (t − y)y ′ = (1− 0.76)× 0.181 = 0.0434
• ∆wGD = µδGhD = 10× 0.0434× 0.90 = 0.391
• ∆wGE = µδGhE = 10× 0.0434× 0.17 = 0.074
• ∆wGF = µδGhF = 10× 0.0434× 1 = 0.434

27



Hidden Layer Updates

11

4.5

-5.2

-2.0

-3.7

3.7

-1.
5

2.9

2.9

-4.6

1

0

0.90

0.17

• Hidden node D
• δD =

(∑
j wj←iδj

)
y ′D = wGDδGy

′
D = 4.5× .0434× .0898 = .0175

• ∆wDA = µδDhA = 10× 0.0175× 1.0 = 0.175
• ∆wDB = µδDhB = 10× 0.0175× 0.0 = 0
• ∆wDC = µδDhC = 10× 0.0175× 1 = 0.175

• Hidden node E
• δE =

(∑
j wj←iδj

)
y ′E = wGEδGy

′
E = −5.2× 0.0434× 0.2055 = −0.0464

• ∆wEA = µδEhA = 10×−0.0464× 1.0 = −0.464
• etc.

28



Some additional aspects

29



Initialization of Weights

• Weights are initialized randomly, e.g. uniformly from interval [−0.01, 0.01]

• Glorot and Bengio (2010) suggest

• for shallow neural networks [
− 1√

n
,
1√
n

]
where n is the size of the previous layer

• for deep neural networks[
−

√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]

nj is the size of the previous layer, nj+1 the size of the next layer

30



Neural Networks for Classification

• Predict class: one output node per class
• Training data output: “One-hot vector”, e.g. y = (0, 0, 1)T

• Prediction
• predicted class is output node yi with highest value

• obtain posterior probability distribution by soft-max, softmax(yi ) =
eyi∑
j e

yj
31



Problems with Gradient Descent Training

Too high learning rate

32



Problems with Gradient Descent Training

Bad initialization

33



Problems with Gradient Descent Training

Local optimum

34



Speedup: Momentum Term

• Updates may move a weight slowly in one direction

• To speed this up, we can keep a memory of prior updates . . .

∆wj←k(n − 1)

• . . . and add these to any new updates (with decay factor ρ)

∆wj←k(n) = µδjhk + ρ∆wj←k(n − 1)

35



Adagrad

• Typically reduce the learning rate µ over time

• at the beginning, things have to change a lot
• later, just fine-tuning

• Adapting learning rate per parameter

• Adagrad update: based on error E with respect to the weight w at time
t = gt = dE

dw

∆wt =
µ√∑t
τ=1 g

2
τ

gt

36



Dropout

• A general problem of machine learning: overfitting to training data (very good on
train, bad on unseen test)

• Solution: regularization, e.g., keeping weights from having extreme values

• Dropout: randomly remove some hidden units during training

• mask: set of hidden units dropped
• randomly generate, say, 10–20 masks
• alternate between the masks during training

• Why does that work? → bagging, ensemble, . . .

37



Mini Batches

• Each training example yields a set of weight updates ∆wi .

• Batch up several training examples

• sum up their updates
• apply sum to model

• Mostly done or speed reasons

38



46

computational aspects

39



Vector and Matrix Multiplications

• Forward computation: s = Wh

• Activation function: y = sgmd(h)

• Error term: δ = (t− y) · sgmd(s)′

• Propagation of error term: δi = Wδi+1 · sgmd(s)′

• Weight updates: ∆W = µδhT

40



GPU

• Neural network layers may have, say, 200 nodes

• Computations such as s = Wh require 200× 200 = 40 000 multiplications

• Graphics Processing Units (GPU) are designed for such computations

• Real-time graphics (projections, shading) requires fast vector and matrix
operations

• GPU has massive number of multi-core but lean processing units
• Example: NVIDIA Tesla K20c GPU provides 2496 thread processors, NVIDIA

Tesla V100 GPU provides 5120 of them + 640 tensor cores operating on 4× 4
matrices

• Extensions to C to support programming of GPUs, such as CUDA

• MATLAB is able to offload computations to GPU if parallel toolbox is installed

41



Toolkits

• Theano

• Tensorflow (Google) — https://playground.tensorflow.org/

• PyTorch (Facebook)

• MXNet (Amazon)

• DyNet

MATLAB: Deep Learning Toolbox

42

https://playground.tensorflow.org/

