Introduction to Neural Networks
Mathematical Tools for ITS (11MAI)

Mathematical tools, 2020

Jan Prikryl
11MAI, lecture 10
Monday, December 07, 2020

version: 2020-12-07 10:05

Department of Applied Mathematics, CTU FTS

Linear Models

e We used before weighted linear combination of feature values h; and weights A;
y=0(\d)=> Nhi(d)
J

e Such models can be illustrated as a “network”
6

HOHE@@E
O

Limits of Linearity

e \We can give each feature a weight
e But not more complex value relationships, e.g.,

e any value in the range [0; 5] is equally good
e values over 8 are bad
e higher than 10 is not worse

Linear models cannot model XOR-like behaviour:

Linear models cannot model XOR-like behaviour:

UEENI TECHNICKE

EESKE VYSOKE
V PRAZE

‘w% . CVUT
o

/

(2]
S
o
>
3]
-
9
=
&
=]

(each arrow is a weight)

Solution: Add an intermediate (“hidden”) layer of processing

\

SUNNS

q,”,,,.,..,.,"...‘sw“w\\\
)

R
Vs
‘y§xy§xyg;’

DXA/P 'W

XA KA
iy

e Have we gained anything so far?

Non-Linearity

e Instead of computing a linear combination
o(A dj) =) Ahi(d))
J

e Add a non-linear function

oA\ d) =" (Z)\jhj(di))

e Popular choices (“sigmoid” = the logistic function)
tanh(x) sgmd(x) relu(x)

UCENI TECHNICKE

EESKE VYSOKE
V PRAZE

80
8=
c
S
(1]
()
-
o
[}
o
@]

More layers = deep learning

\X/ 13X
X

N

N W
ﬁ/ A 'W/"omv
NGy
\h
e
J

DDA

0 AU
Sl

AN

%

g Y

N
x'

1
\
mv it

1

X
AN
AN

MW
TR
OOOO0

What Depths Holds

We can interpret the deep NN as follows:

e Each layer is a processing step
e Having multiple processing steps allows complex functions
e Metaphor: NN and computing circuits

e computer = sequence of Boolean gates
e neural computer = sequence of layers

e Deep neural networks can implement complex functions e.g. sorting on input values

But in fact, a trained NN is just a clever lookup table.

Example

10

Simple Neural Network

e One innovation: bias units (no inputs, always value 1)

11

Simple Neural Network

e Try out two input values

e Hidden unit computation

1
1
sgmd(1.0 X 2.9+ 0.0 x 2.9+ 1 x —4.5) = sgmd(—1.6) = Toe—16 0.17

11

Simple Neural Network

e Try out two input values

e Hidden unit computation

1
1
sgmd(1.0 X 2.9+ 0.0 x 2.9+ 1 x —4.5) = sgmd(—1.6) = Toe—16 0.17

11

Simple Neural Network

e Qutput unit computation

sgmd(0.90 x 4.5+ 0.17 x (—5.2) + 1 x (—2.0)) = sgmd(1.17) = 1ol = 0.76

11

Simple Neural Network

e Qutput unit computation

sgmd(0.90 x 4.5+ 0.17 x (—5.2) + 1 x (—2.0)) = sgmd(1.17) = 1ol = 0.76

11

Output for all Binary Inputs

Input xp Input x; Hidden hg Hidden h; Output yg

0 0 0.12 0.02 0.18 =0
0 1 0.88 0.27 0.74 — 1
1 0 0.73 0.12 0.74 — 1
1 1 0.99 0.73 033 =0

e Network implements XOR
e hidden node hg is OR
e hidden node h; is AND
e final layer operation is hg — (—h1)
e Power of deep neural networks: chaining of processing steps just as: more Boolean
circuits — more complex computations possible

12

Why “neural”’ networks?

13

Neuron in the Brain

e The human brain is made up of about 100 billion neurons
Dendrite Axon terminal
Soma
Axon Nucleus

e Neurons receive electric signals at the dendrites and send them to the axon

14

Neural Communication

e The axon of the neuron is connected to the dendrites of many other neurons
Neurotransmitter

Synaptic vesicle Neurotransmitter transporter Axon terminal Voltage gated Ca++
channel

Receptor Postsynaptic density Synaptic cleft

Dendrite

15

¢vuTt

The Brain vs. Artificial Neural Networks nctumont

UCENI TECHNICKE
V PRAZE

e Similarities
e Neurons, connections between neurons
e Learning = change of connections, not change of neurons
e Massive parallel processing

e But artificial neural networks are much simpler

e computation within neuron vastly simplified
e discrete time steps
e typically some form of supervised learning with massive number of stimuli

16

back-propagation training

17

The output is not exact

e Computed output: y = 0.76
e Correct output: t =1.0
e How do we adjust the weights?

18

Key Concepts

e Gradient descent

error is a function of the weights

we want to reduce the error

gradient descent: move towards the error minimum
compute gradient — get direction to the error minimum
adjust weights towards direction of lower error

e Back-propagation

first adjust last set of weights
propagate error back to each previous layer
adjust their weights

19

Gradient Descent

error(\)

3
|9 A

optimal X current A

20

Gradient Descent

21

Derivative of Sigmoid

1
e Sigmoid function: sgmd(x) = 1+ex
e Derivative
d d 1
T Emd =
_(1—e)x0-1x (-
- (1 + e—X)2
1 e

1+ex . 1+e X

B 1 1 1
14 e 1+e X

= sgmd(x) (1 — sgmd(x))

22

Final Layer Update (numbers here)

Linear combination of weights s = >, wyhy

Activation function y = sgmd(s)
Error (L2 norm) E = (t — y)?/2

Derivative of error with regard to one weight wj

dE dEdy ds

dwe dy ds dwy

23

Final Layer Update (numbers here)

Linear combination of weights s = >, wyhy

Activation function y = sgmd(s)
Error (L2 norm) E = (t — y)?/2

Derivative of error with regard to one weight wj

dE dEdy ds

dwy dy ds dwg

Error E is defined with respect to y

dE d 1 ,

5255 t—y) =—(t—vy)

23

Final Layer Update (numbers here)

Linear combination of weights s = >, wyhy
e Activation function y = sgmd(s)
Error (L2 norm) E = (t — y)?/2

Derivative of error with regard to one weight wj

dE dEdy ds

dwe ~ dy ds dwy

e y with respect to x is sgmd(s):

& = = sgmd(s) = sgmd(s) (1 — sgmd(s)) = y (1 -)

23

Final Layer Update (numbers here)

Linear combination of weights s = >, wyhy
Activation function y = sgmd(s)
Error (L2 norm) E = (t — y)?/2

Derivative of error with regard to one weight wy

dE dEdy ds

dwy dy ds dwg

x is a weighted linear combination of hidden node values hy

ds d
m:mZthk:hk
k

23

Putting it All Together

e Derivative of error with regard to one weight wy

dE. dEdy ds

dwe = dy dsdwg — —(t = y)y(L = y)h

® €rror

e derivative of sigmoid: y’

e Weight adjustment will be scaled by a fixed learning rate u:

Awe = p(t—y)y he

24

Multiple Output Nodes

Our example only had one output node

Typically neural networks have multiple output nodes

Error is computed over all j output nodes
1 2
E= Z 5 (5 = ¥)
J

Weights k — j are adjusted according to the node they point to

Awje i = p(tj — y;)yjhi

25

Hidden Layer Update

e In a hidden layer, we do not have a target output value
e But we can compute how much each node contributed to downstream error

e Definition of error term of each node

& = (t — y;)y;

Back-propagate the error term (why this way? there is math to back it up .. .)

5= Y _wiid; | vf
J

Universal update formula
Awj = pdjhg

26

Our Example

e Computed output: y = 0.76
e Correct output: t = 1.0
e Final layer weight updates (learning rate © = 10)
o g =(t—y)y' = (1—0.76) x 0.181 = 0.0434
o Awgp = udchp = 10 x 0.0434 x 0.90 = 0.391
o Awge = pudghe = 10 x 0.0434 x 0.17 = 0.074
o Awgr = pdchr = 10 x 0.0434 x 1 = 0.434
27

Hidden Layer Updates

e Hidden node D
o o = (3 wieid)) v = wepdayf = 4.5 x 0434 x 0898 = 0175
o Awpp = p1pha = 10 x 0.0175 x 1.0 = 0.175
o Awpg = pdphg = 10 x 0.0175 x 0.0 = 0
o Awpc = pidphc = 10 x 0.0175 x 1 = 0.175
e Hidden node E
o b = (X3, Wi id)) Vi = weedeyg = —5.2 x 0.0434 x 0.2055 = —0.0464
o Awga = pidgha = 10 x —0.0464 x 1.0 = —0.464 28

Some additional aspects

29

Initialization of Weights

e Weights are initialized randomly, e.g. uniformly from interval [—0.01,0.01]
e Glorot and Bengio (2010) suggest

e for shallow neural networks)
1
-
where n is the size of the previous layer
e for deep neural networks

[V6 V6

Vi F A /A F

n; is the size of the previous layer, n;; the size of the next layer

30

c
Re)
s}
1}
O
=
w0
177]
L
@)
—
2
w0
4
[
o
2
s}
[)
2
©
~
=
)]
2

W

4%

N
%‘M.v{

‘%.v

\%.&%m
AN

N

\ 7
/’v’@,‘} A‘\O&A‘
IR
‘:o«‘x/o w/
%\,??/
OOOOOO

W B

N
XKL

\ sy
X7 W

\\Aﬂ\\\‘\ N

e Predict class: one output node per class

T

1)

(0,0,

eg.y

One-hot vector

e Training data output:

e Prediction

with highest value

e predicted class is output node y;

31

[

yi

e
Zj e’

e obtain posterior probability distribution by soft-max, softmax(y;) =

Problems with Gradient Descent Training

error(A)

Too high learning rate

Too high learning rate

32

Problems with Gradient Descent Training

error(A)

A
A
A
A
A

A
A

v>‘

Bad initialization

Bad initialization

33

Problems with Gradient Descent Training

A
error(A)
local optimum
lobal|optimum A
g P >

Local optimum

Local optimum

34

Speedup: Momentum Term

e Updates may move a weight slowly in one direction

e To speed this up, we can keep a memory of prior updates . ..
Awj(n—1)
e ...and add these to any new updates (with decay factor p)

Awji(n) = pdjhic + pAwji(n — 1)

35

Adagrad

e Typically reduce the learning rate p over time

e at the beginning, things have to change a lot
e later, just fine-tuning

e Adapting learning rate per parameter

e Adagrad update: based on error E with respect to the weight w at time

t:gt:%
Aw, = ——tg,

Zf—:l gr2

36

Dropout

A general problem of machine learning: overfitting to training data (very good on
train, bad on unseen test)

Solution: regularization, e.g., keeping weights from having extreme values

Dropout: randomly remove some hidden units during training
e mask: set of hidden units dropped
e randomly generate, say, 10-20 masks
e alternate between the masks during training

Why does that work? — bagging, ensemble, ...

37

Mini Batches

e Each training example yields a set of weight updates Aw;.

e Batch up several training examples

e sum up their updates
e apply sum to model

e Mostly done or speed reasons

38

46

computational aspects

39

Vector and Matrix Multiplications

Forward computation: s = Wh

Activation function: y = sgmd(h)
Error term: § = (t — y) - sgmd(s)’

e Propagation of error term: §; = W4, ;1 - sgmd(s)’
Weight updates: AW = pdhT

40

e Neural network layers may have, say, 200 nodes

e Computations such as s = Wh require 200 x 200 = 40 000 multiplications
e Graphics Processing Units (GPU) are designed for such computations
e Real-time graphics (projections, shading) requires fast vector and matrix
operations
e GPU has massive number of multi-core but lean processing units
e Example: NVIDIA Tesla K20c GPU provides 2496 thread processors, NVIDIA
Tesla V100 GPU provides 5120 of them + 640 tensor cores operating on 4 x 4
matrices
e Extensions to C to support programming of GPUs, such as CUDA
e MATLAB is able to offload computations to GPU if parallel toolbox is installed

41

Toolkits

Theano

Tensorflow (Google) — https://playground.tensorflow.org/
PyTorch (Facebook)

MXNet (Amazon)

DyNet

MATLAB: Deep Learning Toolbox

42

https://playground.tensorflow.org/

