Introduction to Neural Networks

Mathematical Tools for ITS (11MAI)
Mathematical tools, 2020

Jan Přikryl
11MAI, lecture 10
Monday, December 07, 2020
version: 2020-12-07 10:05
Department of Applied Mathematics, CTU FTS

- We used before weighted linear combination of feature values h_{j} and weights λ_{j}

$$
y=\sigma\left(\lambda, d_{i}\right)=\sum_{j} \lambda_{j} h_{j}\left(d_{i}\right)
$$

- Such models can be illustrated as a "network"

- We can give each feature a weight
- But not more complex value relationships, e.g.,
- any value in the range $[0 ; 5]$ is equally good
- values over 8 are bad
- higher than 10 is not worse

Linear models cannot model XOR-like behaviour:

Linear models cannot model XOR-like behaviour:

Multiple Layers

ČVUT

Solution: Add an intermediate ("hidden") layer of processing (each arrow is a weight)

- Have we gained anything so far?

Non-Linearity

- Instead of computing a linear combination

$$
\sigma\left(\lambda, d_{i}\right)=\sum_{j} \lambda_{j} h_{j}\left(d_{i}\right)
$$

- Add a non-linear function

$$
\sigma\left(\lambda, d_{i}\right)=f\left(\sum_{j} \lambda_{j} h_{j}\left(d_{i}\right)\right)
$$

- Popular choices ("sigmoid" \equiv the logistic function)

Deep Learning

More layers $=$ deep learning

We can interpret the deep NN as follows:

- Each layer is a processing step
- Having multiple processing steps allows complex functions
- Metaphor: NN and computing circuits
- computer $=$ sequence of Boolean gates
- neural computer $=$ sequence of layers
- Deep neural networks can implement complex functions e.g. sorting on input values

But in fact, a trained NN is just a clever lookup table.

Example

Simple Neural Network

ČVUT
ceske wysoke UEEENTTECHN
v PRAZE

- One innovation: bias units (no inputs, always value 1)

Simple Neural Network

- Try out two input values
- Hidden unit computation

$$
\begin{aligned}
& \operatorname{sgmd}(1.0 \times 3.7+0.0 \times 3.7+1 \times-1.5)=\operatorname{sgmd}(2.2)=\frac{1}{1+e-2.2}=0.90 \\
& \operatorname{sgmd}(1.0 \times 2.9+0.0 \times 2.9+1 \times-4.5)=\operatorname{sgmd}(-1.6)=\frac{1}{1+e-1.6}=0.17
\end{aligned}
$$

Simple Neural Network

- Try out two input values
- Hidden unit computation

$$
\begin{aligned}
& \operatorname{sgmd}(1.0 \times 3.7+0.0 \times 3.7+1 \times-1.5)=\operatorname{sgmd}(2.2)=\frac{1}{1+e-2.2}=0.90 \\
& \operatorname{sgmd}(1.0 \times 2.9+0.0 \times 2.9+1 \times-4.5)=\operatorname{sgmd}(-1.6)=\frac{1}{1+e-1.6}=0.17
\end{aligned}
$$

Simple Neural Network

- Output unit computation

$$
\operatorname{sgmd}(0.90 \times 4.5+0.17 \times(-5.2)+1 \times(-2.0))=\operatorname{sgmd}(1.17)=\frac{1}{1+\mathrm{e}^{-1.17}}=0.76
$$

Simple Neural Network

- Output unit computation

$$
\operatorname{sgmd}(0.90 \times 4.5+0.17 \times(-5.2)+1 \times(-2.0))=\operatorname{sgmd}(1.17)=\frac{1}{1+\mathrm{e}^{-1.17}}=0.76
$$

Output for all Binary Inputs

Input x_{0}	Input x_{1}	Hidden h_{0}	Hidden h_{1}	Output y_{0}
0	0	0.12	0.02	$0.18 \rightarrow 0$
0	1	0.88	0.27	$0.74 \rightarrow 1$
1	0	0.73	0.12	$0.74 \rightarrow 1$
1	1	0.99	0.73	$0.33 \rightarrow 0$

- Network implements XOR
- hidden node h_{0} is OR
- hidden node h_{1} is AND
- final layer operation is $h_{0}-\left(-h_{1}\right)$
- Power of deep neural networks: chaining of processing steps just as: more Boolean circuits \rightarrow more complex computations possible

Why "neural" networks?

Neuron in the Brain

čVUT
CEsKE yysoxt UCEEITECH
vpRAZE

- The human brain is made up of about 100 billion neurons Dendrite Axon terminal
Soma
Axon Nucleus
- Neurons receive electric signals at the dendrites and send them to the axon
- The axon of the neuron is connected to the dendrites of many other neurons Neurotransmitter
Synaptic vesicle Neurotransmitter transporter Axon terminal Voltage gated Ca++ channel
Receptor Postsynaptic density Synaptic cleft Dendrite
- Similarities
- Neurons, connections between neurons
- Learning $=$ change of connections, not change of neurons
- Massive parallel processing
- But artificial neural networks are much simpler
- computation within neuron vastly simplified
- discrete time steps
- typically some form of supervised learning with massive number of stimuli
back-propagation training

The output is not exact

- Computed output: $y=0.76$
- Correct output: $t=1.0$
- How do we adjust the weights?

Key Concepts

ČVUT
ceske vysoke UCENITECH
v PRAZE

- Gradient descent
- error is a function of the weights
- we want to reduce the error
- gradient descent: move towards the error minimum
- compute gradient \rightarrow get direction to the error minimum
- adjust weights towards direction of lower error
- Back-propagation
- first adjust last set of weights
- propagate error back to each previous layer
- adjust their weights

Gradient Descent

ČVUT

Gradient Descent

Derivative of Sigmoid

ČVUT
Ceskeyysoke UCENITECH
v PRAZE

- Sigmoid function: $\operatorname{sgmd}(x)=\frac{1}{1+\mathrm{e}^{-x}}$
- Derivative

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \operatorname{sgmd}(x) & =\frac{\mathrm{d}}{\mathrm{~d} x} \frac{1}{1+\mathrm{e}^{-x}} \\
& =\frac{\left(1-\mathrm{e}^{-x}\right) \times 0-1 \times\left(-\mathrm{e}^{-x}\right)}{\left(1+\mathrm{e}^{-x}\right)^{2}} \\
& =\frac{1}{1+\mathrm{e}^{-x}} \cdot \frac{\mathrm{e}^{-x}}{1+\mathrm{e}^{-x}} \\
& =\frac{1}{1+\mathrm{e}^{-x}}\left(1-\frac{1}{1+\mathrm{e}^{-x}}\right) \\
& =\operatorname{sgmd}(x)(1-\operatorname{sgmd}(x))
\end{aligned}
$$

Final Layer Update (numbers here)

- Linear combination of weights $s=\sum_{k} w_{k} h_{k}$
- Activation function $y=\operatorname{sgmd}(s)$
- Error (L2 norm) $E=(t-y)^{2} / 2$
- Derivative of error with regard to one weight w_{k}

$$
\frac{\mathrm{d} E}{\mathrm{~d} w_{k}}=\frac{\mathrm{d} E}{\mathrm{~d} y} \frac{\mathrm{~d} y}{\mathrm{~d} s} \frac{\mathrm{~d} s}{\mathrm{~d} w_{k}}
$$

Final Layer Update (numbers here)

- Linear combination of weights $s=\sum_{k} w_{k} h_{k}$
- Activation function $y=\operatorname{sgmd}(s)$
- Error (L2 norm) $E=(t-y)^{2} / 2$
- Derivative of error with regard to one weight w_{k}

$$
\frac{\mathrm{d} E}{\mathrm{~d} w_{k}}=\frac{\mathrm{d} E}{\mathrm{~d} y} \frac{\mathrm{~d} y}{\mathrm{~d} s} \frac{\mathrm{~d} s}{\mathrm{~d} w_{k}}
$$

- Error E is defined with respect to y

$$
\frac{\mathrm{d} E}{\mathrm{~d} y}=\frac{\mathrm{d}}{\mathrm{~d} y} \frac{1}{2}(t-y)^{2}=-(t-y)
$$

Final Layer Update (numbers here)

- Linear combination of weights $s=\sum_{k} w_{k} h_{k}$
- Activation function $y=\operatorname{sgmd}(s)$
- Error (L2 norm) $E=(t-y)^{2} / 2$
- Derivative of error with regard to one weight w_{k}

$$
\frac{\mathrm{d} E}{\mathrm{~d} w_{k}}=\frac{\mathrm{d} E}{\mathrm{~d} y} \frac{\mathrm{~d} y}{\mathrm{~d} s} \frac{\mathrm{~d} s}{\mathrm{~d} w_{k}}
$$

- y with respect to x is $\operatorname{sgmd}(s)$:

$$
\frac{\mathrm{d} y}{\mathrm{~d} s}=\frac{\mathrm{d}}{\mathrm{~d} s} \operatorname{sgmd}(s)=\operatorname{sgmd}(s)(1-\operatorname{sgmd}(s))=y(1-y)
$$

Final Layer Update (numbers here)

- Linear combination of weights $s=\sum_{k} w_{k} h_{k}$
- Activation function $y=\operatorname{sgmd}(s)$
- Error (L2 norm) $E=(t-y)^{2} / 2$
- Derivative of error with regard to one weight w_{k}

$$
\frac{\mathrm{d} E}{\mathrm{~d} w_{k}}=\frac{\mathrm{d} E}{\mathrm{~d} y} \frac{\mathrm{~d} y}{\mathrm{~d} s} \frac{\mathrm{~d} s}{\mathrm{~d} w_{k}}
$$

- x is a weighted linear combination of hidden node values h_{k}

$$
\frac{\mathrm{d} s}{\mathrm{~d} w_{k}}=\frac{\mathrm{d}}{\mathrm{~d} w_{k}} \sum_{k} w_{k} h_{k}=h_{k}
$$

Putting it All Together

ceske wysoke uCENITECH
vPRAZE

- Derivative of error with regard to one weight w_{k}

$$
\frac{\mathrm{d} E}{\mathrm{~d} w_{k}}=\frac{\mathrm{d} E}{\mathrm{~d} y} \frac{\mathrm{~d} y}{\mathrm{~d} s} \frac{\mathrm{~d} s}{\mathrm{~d} w_{k}}=-(t-y) y(1-y) h_{k}
$$

- error
- derivative of sigmoid: y^{\prime}
- Weight adjustment will be scaled by a fixed learning rate μ :

$$
\Delta w_{k}=\mu(t-y) y^{\prime} h_{k}
$$

Multiple Output Nodes

- Our example only had one output node
- Typically neural networks have multiple output nodes
- Error is computed over all j output nodes

$$
E=\sum_{j} \frac{1}{2}\left(t_{j}-y_{j}\right)^{2}
$$

- Weights $k \rightarrow j$ are adjusted according to the node they point to

$$
\Delta w_{j \leftarrow k}=\mu\left(t_{j}-y_{j}\right) y_{j}^{\prime} h_{k}
$$

Hidden Layer Update

- In a hidden layer, we do not have a target output value
- But we can compute how much each node contributed to downstream error
- Definition of error term of each node

$$
\delta_{j}=\left(t_{j}-y_{j}\right) y_{j}^{\prime}
$$

- Back-propagate the error term (why this way? there is math to back it up ...)

$$
\delta_{i}=\left(\sum_{j} w_{j \leftarrow i} \delta_{j}\right) y_{i}^{\prime}
$$

- Universal update formula

$$
\Delta w_{j \leftarrow k}=\mu \delta_{j} h_{k}
$$

Our Example

- Computed output: $y=0.76$
- Correct output: $t=1.0$
- Final layer weight updates (learning rate $\mu=10$)
- $\delta_{\mathrm{G}}=(t-y) y^{\prime}=(1-0.76) \times 0.181=0.0434$
- $\Delta w_{\mathrm{GD}}=\mu \delta_{\mathrm{G}} h_{\mathrm{D}}=10 \times 0.0434 \times 0.90=0.391$
- $\Delta w_{\mathrm{GE}}=\mu \delta_{\mathrm{G}} h_{\mathrm{E}}=10 \times 0.0434 \times 0.17=0.074$
- $\Delta w_{\mathrm{GF}}=\mu \delta_{\mathrm{G}} h_{\mathrm{F}}=10 \times 0.0434 \times 1=0.434$

Hidden Layer Updates

- Hidden node D
- $\delta_{\mathrm{D}}=\left(\sum_{j} w_{j \leftarrow i} \delta_{j}\right) y_{\mathrm{D}}^{\prime}=w_{\mathrm{GD}} \delta_{\mathrm{G}} y_{\mathrm{D}}^{\prime}=4.5 \times .0434 \times .0898=.0175$
- $\Delta w_{\mathrm{DA}}=\mu \delta_{\mathrm{D}} h_{\mathrm{A}}=10 \times 0.0175 \times 1.0=0.175$
- $\Delta w_{\mathrm{DB}}=\mu \delta_{\mathrm{D}} h_{\mathrm{B}}=10 \times 0.0175 \times 0.0=0$
- $\Delta w_{\mathrm{DC}}=\mu \delta_{\mathrm{D}} h_{\mathrm{C}}=10 \times 0.0175 \times 1=0.175$
- Hidden node E
- $\delta_{\mathrm{E}}=\left(\sum_{j} w_{j \leftarrow i} \delta_{j}\right) y_{\mathrm{E}}^{\prime}=w_{\mathrm{GE}} \delta_{\mathrm{G}} y_{\mathrm{E}}^{\prime}=-5.2 \times 0.0434 \times 0.2055=-0.0464$
- $\Delta w_{\mathrm{EA}}=\mu \delta_{\mathrm{E}} h_{\mathrm{A}}=10 \times-0.0464 \times 1.0=-0.464$

Some additional aspects

- Weights are initialized randomly, e.g. uniformly from interval [-0.01, 0.01]
- Glorot and Bengio (2010) suggest
- for shallow neural networks

$$
\left[-\frac{1}{\sqrt{n}}, \frac{1}{\sqrt{n}}\right]
$$

where n is the size of the previous layer

- for deep neural networks

$$
\left[-\frac{\sqrt{6}}{\sqrt{n_{j}+n_{j+1}}}, \frac{\sqrt{6}}{\sqrt{n_{j}+n_{j+1}}}\right]
$$

n_{j} is the size of the previous layer, n_{j+1} the size of the next layer

- Predict class: one output node per class
- Training data output: '"One-hot vector", e.g. $\mathbf{y}=(0,0,1)^{\top}$
- Prediction
- predicted class is output node y_{i} with highest value
- obtain posterior probability distribution by soft-max, $\operatorname{softmax}\left(y_{i}\right)=\frac{\mathrm{e}^{y_{i}}}{\sum_{j} \mathrm{e}^{y_{j}}}$

Too high learning rate

Bad initialization

Local optimum

- Updates may move a weight slowly in one direction
- To speed this up, we can keep a memory of prior updates...

$$
\Delta w_{j \leftarrow k}(n-1)
$$

- ... and add these to any new updates (with decay factor ρ)

$$
\Delta w_{j \leftarrow k}(n)=\mu \delta_{j} h_{k}+\rho \Delta w_{j \leftarrow k}(n-1)
$$

- Typically reduce the learning rate μ over time
- at the beginning, things have to change a lot
- later, just fine-tuning
- Adapting learning rate per parameter
- Adagrad update: based on error E with respect to the weight w at time $t=g_{t}=\frac{\mathrm{d} E}{\mathrm{~d} w}$

$$
\Delta w_{t}=\frac{\mu}{\sqrt{\sum_{\tau=1}^{t} g_{\tau}^{2}}} g_{t}
$$

- A general problem of machine learning: overfitting to training data (very good on train, bad on unseen test)
- Solution: regularization, e.g., keeping weights from having extreme values
- Dropout: randomly remove some hidden units during training
- mask: set of hidden units dropped
- randomly generate, say, 10-20 masks
- alternate between the masks during training
- Why does that work? \rightarrow bagging, ensemble, ...

ČVUT
CEsKEysoxe UCEEITECH
v PRAZE

- Each training example yields a set of weight updates Δw_{i}.
- Batch up several training examples
- sum up their updates
- apply sum to model
- Mostly done or speed reasons

46
computational aspects

- Forward computation: $\mathbf{s}=\mathrm{Wh}$
- Activation function: $\mathbf{y}=\operatorname{sgmd}(\mathbf{h})$
- Error term: $\delta=(\mathrm{t}-\mathrm{y}) \cdot \operatorname{sgmd}(\mathrm{s})^{\prime}$
- Propagation of error term: $\boldsymbol{\delta}_{i}=\mathrm{W} \boldsymbol{\delta}_{i+1} \cdot \operatorname{sgmd}(\mathrm{~s})^{\prime}$
- Weight updates: $\Delta W=\mu \delta h^{\top}$
- Neural network layers may have, say, 200 nodes
- Computations such as $s=W h$ require $200 \times 200=40000$ multiplications
- Graphics Processing Units (GPU) are designed for such computations
- Real-time graphics (projections, shading) requires fast vector and matrix operations
- GPU has massive number of multi-core but lean processing units
- Example: NVIDIA Tesla K20c GPU provides 2496 thread processors, NVIDIA Tesla V100 GPU provides 5120 of them +640 tensor cores operating on 4×4 matrices
- Extensions to C to support programming of GPUs, such as CUDA
- MATLAB is able to offload computations to GPU if parallel toolbox is installed
- Theano
- Tensorflow (Google) — https://playground.tensorflow.org/
- PyTorch (Facebook)
- MXNet (Amazon)
- DyNet

MATLAB: Deep Learning Toolbox

