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Review — Model flexibility

We collect a set of data (n = 100 observations) containing a single predictor x and a
quantitative response y . We then fit a linear regression model to the data, as well as a
separate cubic regression, i.e., y = β0 + β1x + β2x

2 + β3x
3 + ϵ.

a) Suppose that the true relationship between x a y is linear, i.e., y = β0 + β1x + ϵ.
Consider the training residual sum of squares (RSS) for the linear regression, and
also the training RSS for the cubic regression. Would we expect one to be lower
than the other, would we expect them to be the same, or is there not enough
information to tell? Justify your answer.

b) Answer a) using RSS on a testing set rather than training RSS.
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Review — Model flexibility

c) Suppose now that the true relationship between x a y is non-linear, but we don’t
know how much non-linear it is. Consider the training RSS for the linear
regression, and also the training RSS for the cubic regression. Would we expect
one to be lower than the other, would we expect them to be the same, or is there
not enough information to tell? Justify your answer.

d) Answer c) using RSS on a testing set rather than training RSS.
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Matlab Session 7.1 — Stock market data

Is there a way to seriously predict the development of a stock market index?

Let’s start with selected historical daily data of S&P between 2001–2005.

Read and display the general characteristics

smarket = readtable(’islr_smarket.csv’);
summary(smarket)

The Direction is a categorical variable (either Up or Down) and we have to tell that to
Matlab:

smarket.Direction = categorical(smarket.Direction)
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Matlab Session 7.1 — Stock market data

We might be interested in correlations between different numerical variables in the data.
Matlab has the corrcoef() function exactly for this purpose . . .

corrcoef(smarket)

. . . but the input has to be a matrix:

smarket_matrix = table2array(smarket(:,2:end-1))
smarket_cc = corrcoef(smarket_matrix);

Explain, why we index smarket(:,2:end-1).

Can you find some values in the correlation matrix indicating a correlation between some
columns? If yes, to which variables do these columns correspond?
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Matlab Session 7.1 — Stock market data

We might be interested in correlations between different numerical variables in the data.
Matlab has the corrcoef() function exactly for this purpose . . .

corrcoef(smarket)

. . . but the input has to be a matrix:

smarket_matrix = table2array(smarket(:,2:end-1))
smarket_cc = corrcoef(smarket_matrix);

Explain, why we index smarket(:,2:end-1).

Let’s plot it:

plot(smarket.Volume)

Based on the graph data explain why are Year and Volume positively correlated. 8



Matlab Session 7.1 — Stock market data

Let’s now train a generalised linear model of Direction as a function of Lag1 through
Lag5. The logistic model can be specified using ’Distribution’, ’binomial’:

mdl = fitglm(smarket,
’Direction␣~␣Lag1+Lag2+Lag3+Lag4+Lag5+Volume’,
’Distribution’, ’binomial’)

Which regression coefficient has the smallest p-value? Does this value suggest a strong
influence on the model output?
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Matlab Session 7.1 — Stock market data

Have a look at the model prediction on the original data:

probs = predict(mdl)

The quality of the model can be assessed by comparing the model prediction with the
training values stored in Direction. But first we have to convert probs to categorical
values Up and Down:

predictions = repmat(categorical({’Down’}), mdl.NumObservations, 1);
predictions(probs>0.5) = ’Up’; %

We continue with the confusion matrix:

confusionmat(predictions,smarket.Direction)
(507+145)/1250
mean(predictions == smarket.Direction)
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Matlab Session 7.1 — Stock market data

Is our model better than a random choice? What is its training error?

A significantly better estimate of a real model error can be obtained by splitting the
data into training and testing datasets. Let’stry to fit the model to 2001–2004 data and
verify it on data from 2005.

train = (smarket.Year<2005); % Boolean column vector of true/false
smarket_train = smarket(train,:);
smarket_test = smarket(~train,:);

What does smarket(train,:), and smarket(~train,:) mean?

How large are the training and testing datasets?

size(smarket_train)
size(smarket_test)
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Matlab Session 7.1 — Stock market data

Fit the model to the training data and verify it on data from 2005:

mdlt = fitglm(smarket_train,
’Direction␣~␣Lag1+Lag2+Lag3+Lag4+Lag5+Volume’,
’Distribution’, ’binomial’)

probs = predict(mdlt, smarket_test); % Test set data
% Conversion to Up/Down
predictions = repmat(categorical({’Down’}),mdlt.NumObservations,1);
predictions(probs>0.5) = ’Up’;
% Confusion matrix and the percentage of correct predictions
confusionmat(predictions, smarket_test.Direction)
mean(predictions == smarket_test.Direction)

How large is the test set error?
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Matlab Session 7.1 — Stock market data

Let us fit the model using only Lag1 and Lag2, which had the strongest predictive
power in the original logistic regression:

mdlt = fitglm(smarket_train,
’Direction␣~␣Lag1+Lag2’,
’Distribution’, ’binomial’)
probs = predict(mdlt, smarket_test);
predictions = repmat(categorical({’Down’}),252,1);
predictions(probs>0.5) = ’Up’;
confusionmat(predictions, smarket_test.Direction)
mean(predictions == smarket_test.Direction)

Did the testing error estimate improve now? What is the probability of market increase?
What about market decrease? And what about some simple strategies?
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Matlab Session 7.1 — Stock market data

Finally we will compute predictions for new values Lag1 and Lag2 given by the
following table:

Lag1 Lag2

1,2 1,1
1,5 −0,8

% Vytvorime novou Matlabi tabulku
pt = table([1.2;1.5], [1.1;-0.8], ’VariableNames’, {’Lag1’, ’Lag2’});
% Vyhodnotime model na datech ulozenych v ‘pt‘
predict(mdlt2, pt)’

Instead of using a Matlab table we could use the pt directly in a matrix form. How can
we do it?
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The Bootstrap

Definition (Bootstrap)
The bootstrap is a flexible and powerful statistical tool that can be used to quantify
the uncertainty associated with a given estimator or statistical learning method.

For example, it can provide an estimate of the standard error of a coefficient, or a
confidence interval for that coefficient.

• This is not really necessary for linear regression (why?)

• But it can be easily applied to a wide range of other statistical learning methods
where a measure of variability is difficult to obtain
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Where does the name came from?

The use of the term bootstrap derives from the phrase to pull oneself up by one’s
bootstraps, widely thought to be based on one of the eighteenth century “The
Surprising Adventures of Baron Munchausen” by Rudolph Erich Raspe:

The Baron had fallen to the bottom of a deep lake. Just when it looked like
all was lost, he thought to pick himself up by his own bootstraps.

• It is not the same as the term “bootstrap” used in computer science meaning to
“boot” a computer from a set of core instructions, though the derivation is similar.

• It is unrelated to Twitter Bootstrap, a framework for web development.
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The Bootstrap: Simple example

Let’s start with a simple example:

• Suppose that we wish to invest a fixed sum of money in two financial assets that
yield returns of X and Y , respectively, where X and Y are random quantities.

• We will invest a fraction α of our money in X , and will invest the remaining 1 − α

in Y .
• We wish to choose α to minimize the total risk (expressed as variance), of our

investment. In other words, we want to minimize var(αX + (1 − α)Y ).
• One can show that the value that minimizes the risk is given by

α =
σ2
Y − σXY

σ2
X + σ2

Y − 2σXY
,

where σ2
X = var(X ), σ2

Y = var(Y ), and σXY = cov(X ,Y ).
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Example continued

• We have from the previous slide

α =
σ2
Y − σXY

σ2
X + σ2

Y − 2σXY
,

but the values of σ2
X , σ2

Y , and σXY are unknown.

• We can compute estimates for these quantities, σ̂2
X , σ̂2

Y and σ̂XY , using a data set
that contains measurements for X and Y .

• We can then estimate the value of α that minimizes the variance of our investment
using

α̂ =
σ̂2
Y − σ̂XY

σ̂2
X + σ̂2

Y − 2σ̂XY
.
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Example continued

Each panel displays 100 simulated
returns for investments X and Y .
From left to right and top to bottom,
the resulting estimates for α are equal
to 0.576, 0.532, 0.657, and 0.651.
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Example continued

• To estimate the standard deviation of α̂, we repeat the process of simulating 100
paired observations of X and Y , and estimating α 1000 times.

• We thereby obtained 1000 estimates for α, which we can call α̂1, α̂2, . . . , α̂1000.

• The left-hand panel of the Figure on slide 23 displays a histogram of the resulting
estimates.

• For these simulations the parameters were set to σ2
X = 1, σ2

Y = 1.25 a σXY = 0.5,
and so we know that the true value of α is 0.6 (indicated by the red line).
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Example continued

• The mean over all 1000 estimates for α is

ᾱ =
1

1000

1000∑
r=1

α̂r = 0.5996,

very close to α = 0.6, and the standard deviation of the estimates is√√√√ 1
1000 − 1

1000∑
r=1

(α̂r − ᾱ)2 = 0.083.

• This gives us a very good idea of the accuracy of α̂: SE(α̂) ≈ 0.083.

• So roughly speaking, for a random sample from the population, we would expect α̂
to differ from α by approximately 0.08, on average.
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Results

Left: A histogram of the estimates of α obtained by generating 1000 simulated data
sets from the true population. Center: A histogram of the estimates of α obtained from
1000 bootstrap samples from a single data set. Right: The estimates of α displayed in
the left and center panels are shown as boxplots. In each panel, the pink line indicates
the true value of α. 23



Now back to the real world

• The procedure outlined above cannot be applied, because for real data we cannot
generate new samples from the original population.

• However, the bootstrap approach allows us to use a computer to mimic the
process of obtaining new data sets, so that we can estimate the variability of our
estimate without generating additional samples.

• Rather than repeatedly obtaining independent data sets from the population, we
instead obtain distinct data sets by repeatedly sampling observations from the
original data set with replacement.

• Each of these “bootstrap data sets” is created by sampling with replacement, and
is the same size as our original dataset. As a result some observations may appear
more than once in a given bootstrap data set and some not at all.
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Example with just 3 observations

A graphical illustration of the bootstrap
approach on a small sample containing
n = 3 observations.

Each bootstrap data set contains n

observations, sampled with replacement
from the original data set.

Each bootstrap data set is used to obtain
an estimate of α.
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• Denoting the first bootstrap data set by Z ⋆1, we use Z ⋆1 to produce a new
bootstrap estimate for α, which we call α̂⋆1.

• This procedure is repeated B times for some large value of B (say 100 or 1000), in
order to produce B different bootstrap data sets, Z ⋆1,Z ⋆2, . . . ,Z ⋆B , and B

corresponding α estimates: α̂⋆1, α̂⋆2, . . . , α̂⋆B .

• We estimate the standard error of these bootstrap estimates using the formula

SEB(α̂) =

√√√√ 1
B − 1

B∑
r=1

(α̂⋆r − ¯̂α⋆)2.

• This serves as an estimate of the standard error of α̂, estimated from the original
data set. See centre and right panels of Figure on slide 23. Bootstrap results are in
blue. For this example SEB(α̂) = 0.087.
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A general picture for the bootstrap
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The bootstrap in general

• In more complex data situations, figuring out the appropriate way to generate
bootstrap samples can require some thought.

• For example, if the data is a time series, we can’t simply sample the observations
with replacement (why not?).

• We can instead create blocks of consecutive observations, and sample those with
replacements. Then we paste together sampled blocks to obtain a bootstrap
dataset.

28
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Other uses of the bootstrap

• Primarily used to obtain standard errors of an estimate.

• Also provides approximate confidence intervals for a population parameter. For
example, looking at the histogram in the middle panel of the Figure on slide 23, the
5% and 95% quantiles of the 1000 values are equal to 0.43 and 0.72, respectively.

• This represents an approximate 90% confidence interval for the true α. How do
we interpret this confidence interval?

• The above interval is called a Bootstrap Percentile confidence interval. It is the
simplest method (among many approaches) for obtaining a confidence interval
from the bootstrap.
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Can the bootstrap estimate prediction error?

• In cross-validation, each of the K validation folds is distinct from the other K − 1
folds used for training: there is no overlap. This is crucial for its success. Why?

• To estimate prediction error using the bootstrap, we could think about using each
bootstrap dataset as our training sample, and the original sample as our validation
sample.

• But each bootstrap sample has significant overlap with the original data. About
two-thirds of the original data points appear in each bootstrap sample. Can you
prove this?

• This will cause the bootstrap to seriously underestimate the true prediction error.
Why?

• The other way around — with original sample = training sample, bootstrap
dataset = validation sample — is worse!

30
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Removing the overlap

• Can partly fix this problem by only using predictions for those observations that did
not (by chance) occur in the current bootstrap sample.

• But the method gets complicated, and in the end, cross-validation provides a
simpler and more attractive approach for estimating prediction error.
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Matlab Session 7.2
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Matlab Session 7.2 — Bootstrap

We will replicate the process of estimating the α statistics on islr_portfolio data.
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Dimensionality reduction: Principal Components Regression

We said that a clever linear combination of original predictors may result in a set of
synthetic predictors with lower variance.

• Let’s apply principal components analysis (PCA) to define the linear combinations
of the predictors, for use in our regression.

• The first principal component is that (normalized) linear combination of the
predictors with the largest variance.

• The second principal component has the largest variance, subject to being
uncorrelated with the first.

• And so on . . .

• Hence with many correlated original variables, we replace them with a small set of
principal components that capture their joint variation.
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Pictures of PCA

The population size (pop) and ad spending (ad) for 100 different cities are shown as
purple circles. The green solid line indicates the first principal component, and the blue
dashed line indicates the second principal component.
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Pictures of PCA: continued

A subset of the advertising data. Left: The first principal component, chosen to
minimize the sum of the squared perpendicular distances to each point, is shown in
green. These distances are represented using the black dashed line segments. Right:
The left-hand panel has been rotated so that the first principal component lies on the
x-axis.
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Pictures of PCA: continued

Plots of the first principal component scores zi1 versus pop and ad. The relationships
are strong.
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Pictures of PCA: continued

Plots of the first principal component scores zi2 versus pop and ad. The relationships
are weak.
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Application to Principal Components Regression

PCR was applied to two simulated data sets. The black, green, and purple lines
correspond to squared bias, variance, and test mean squared error, respectively. Left:
Simulated data from slide ??. Right: Simulated data from slide ??.
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Choosing the number of directions M

Left: PCR standardized coefficient estimates on the Credit data set for different
values of M. Right: The 10-fold cross-validation MSE obtained using PCR, as a
function of M.
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Important drawback of PCR

PCR reduces the number of “important” predictors.

• It identifies linear combinations, or directions, that best represent the predictors
X1, . . . ,Xp.

• These directions are identified in an unsupervised way, since the response Y is not
used to help determine the principal component directions.

• That is, the response does not supervise the identification of the principal
components.

• Consequently, PCR suffers from a potentially serious drawback:
There is no guarantee that the directions that best explain the predictors will also
be the best directions to use for predicting the response.

42



Matlab Session 7.3
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Matlab Session 7.3 — Principal Component Regression
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Partial Least Squares (PLS)

PLS is a dimension reduction method, which (like PCR) first identifies a new set of
features Z1, . . . ,ZM that are linear combinations of the original features X1, . . . ,Xp,
and then fits a linear model via OLS using these M new features.

• But unlike PCR, PLS identifies these new features in a supervised way – that is, it
makes use of the response Y in order to identify new features that not only
approximate the old features well, but also that are related to the response.

• Roughly speaking, the PLS approach attempts to find directions that help explain
both the response and the predictors.
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Details of Partial Least Squares

After standardizing the p predictors, PLS computes the first direction Z1 by setting
each ϕ1j in

Zm =

p∑
j=1

ϕmjXj

equal to the coefficient from the simple linear regression of Y onto Xj .

• One can show that this coefficient is proportional to the correlation between Y

and Xj .

• Hence, in computing Z1 =
∑p

j=1 ϕ1jXj PLS places the highest weight on the
variables that are most strongly related to the response.

• Subsequent directions are found by taking residuals and then repeating the above
prescription.
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Matlab Session 7.4
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Matlab Session 7.4 — Partial Least Squares Regression

Matlab implements partial least squares (PLS) using the plsregress() function from
the Statistics and Machine Learning Toolbox.

> set.seed (1)
> pls.fit=plsr(Salary~., data=Hitters, subset=train, scale=TRUE,
validation="CV")
> summary (pls.fit )

49



Shrnutí

• Metody pro výběr modelu jsou podstatným nástrojem pro analýzu dat, obzvláště
pro velké datové soubory zahrnující mnoho prediktorů.

• Výzkum v oblasti metod, které dávají řídkost, jako je například Lasso, je
obzvláště aktuální oblast.

• Později se vrátíme k řídkosti podrobněji a popíšeme příbuzné přístupy jako je
elastická síť.
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