
Introduction to Neural Networks
Mathematical Tools for ITS (11MAI)

Mathematical tools, 2021

Jan Přikryl
(based on the book “Introduction to Statistical Learning”, https://www.statlearning.com/)

11MAI, lecture 9
Monday, November 15, 2021
version: 2021-11-15 13:15

Department of Applied Mathematics, CTU FTS

1

https://www.statlearning.com/


Artificial Neural Networks

Neural networks became popular in the 1980s as classifiers for difficult tasks (letter and
image recognition). Lots of successes, hype, and great conferences: NIPS, Snowbird.

In that time they required a lot of manual and non-intuitive tweaking to work.

Then along came SVMs, Random Forests and Boosting in the 1990s, which were
simpler to set up, and Neural Networks took a back seat.

Re-emerged around 2010 as Deep Learning. By 2020s very dominant and successful.

Part of success due to vast improvements in computing power (GPUs), larger training
sets, and free software (e.g., Tensorflow and PyTorch, plus Keras).

2



Linear Models

We have used models that can be expressed
as a weighted linear combination of feature
(regressor) values xj and their weights βj

y = f (x) = score(β, x) =
∑
j

βjxj

Such models can be illustrated as a
“network”

y

x1

x2

x3

x4

x5

x6

β1

β6

3



Limits of Linearity

So far we have been using linear models:

• We can give each feature a weight

• But we cannot model more complex value relationships, e.g.,

• any value in the range [0; 5] is equally good
• values over 8 are bad
• higher than 10 is not worse

• Linear models can have significant limitations in terms of predictive power because
the linearity assumption is almost always an approximation (and sometimes a poor
one).

4



XOR

Linear models cannot model XOR-like behaviour:

0

0

1

1

5



XOR

Linear models cannot model XOR-like behaviour:

0

0

1

1

5



Network with Multiple Layers

Solution: Add an intermediate (“hidden”) layer of processing (each arrow is a weight)
and allow for neuron-inspired non-linear processing there.

f (x)

A1

A2

A3

A4

A5

A6

x1

x2

x3

x4

y

y = f (x) = β0 +
K∑

k=1

βkAk = β0 +
K∑

k=1

βkhk(x) = β0 +
K∑

k=1

βkg(wk0 +

p∑
j=0

wkjxj)
6



Network details

The K hidden layer units process information from all p predictors:

• Ak = hk(x) = g(wk0 +
∑p

j=1 wkjxj) are called the activations in the hidden layer.

• Non-linear function g(z) is called the activation function.

Note:

• Activation functions in hidden layers are typically nonlinear, otherwise the model
collapses to a linear model.

• The activations are like “derived features” in statistic learning, they are non-linear
transformations of linear combinations of the original features.

• The model is fit by finding weights wpq by minimizing residuals or computing
maximum likelihood

7



Adding non-Linearity

Instead of computing a linear combination

score(β,d) = β0 +
∑
j

βjhj(d)

use a non-linear activation function

score(w,d) = g

w0 +
∑
j

wjhj(d)


Popular choices (“sigmoid” ≡ the logistic function)

−5 0 5
−1

0

1

tanh(x)

−5 0 5
0

0.5

1

σ(x)

−5 0 5
0
2
4

relu(x)

8



Deep Learning

More layers = deep learning

y

9



What Depths Holds

We can interpret the deep NN as follows:

• Each layer is a processing step

• Having multiple processing steps allows complex functions

• Metaphor: NN and computing circuits

• computer = sequence of Boolean gates
• neural computer = sequence of layers

• Deep neural networks can implement complex functions e.g. sorting on input values

But in fact, a trained NN is just a clever lookup table.

10



Example

11



Simple Neural Network

11

4.5

-5.2

-2.0

3.7

3.7

-1.
5

2.9

2.9

-4.6

x1

x2

A1

A2 y

• Bias units (no inputs, always value 1) represent weights wk0

12



Simple Neural Network

11

4.5

-5.2

-2.0

3.7

3.7

-1.
5

2.9

2.9

-4.6

1

0

A1

A2 y

• Try out two input values

• Hidden unit computation

A1 = σ(1.0 × 3.7 + 0.0 × 3.7 + 1 × (−1.5)) = σ(2.2) =
1

1 + e−2.2 = 0.90

A2 = σ(1.0 × 2.9 + 0.0 × 2.9 + 1 × (−4.5)) = σ(−1.6) =
1

1 + e−1.6 = 0.17

12



Simple Neural Network

11

4.5

-5.2

-2.0

3.7

3.7

-1.
5

2.9

2.9

-4.6

1

0

0.90

0.17 y

• Try out two input values

• Hidden unit computation

A1 = σ(1.0 × 3.7 + 0.0 × 3.7 + 1 × (−1.5)) = σ(2.2) =
1

1 + e−2.2 = 0.90

A2 = σ(1.0 × 2.9 + 0.0 × 2.9 + 1 × (−4.5)) = σ(−1.6) =
1

1 + e−1.6 = 0.17

12



Simple Neural Network

11

4.5

-5.2

-2.0

3.7

3.7

-1.
5

2.9

2.9

-4.6

1

0

0.90

0.17 y

• Output unit computation

σ(0.90 × 4.5 + 0.17 × (−5.2) + 1 × (−2.0)) = σ(1.17) =
1

1 + e−1.17 = 0.76

12



Simple Neural Network

11

4.5

-5.2

-2.0

3.7

3.7

-1.
5

2.9

2.9

-4.6

1

0

0.90

0.17 0.76

• Output unit computation

σ(0.90 × 4.5 + 0.17 × (−5.2) + 1 × (−2.0)) = σ(1.17) =
1

1 + e−1.17 = 0.76

12



Output for all Binary Inputs

Input x1 Input x2 Hidden A1 Hidden A2 Output y

0 0 0.12 0.02 0.18 → 0
0 1 0.88 0.27 0.74 → 1
1 0 0.73 0.12 0.74 → 1
1 1 0.99 0.73 0.33 → 0

• Network implements XOR
• hidden node h0 is OR
• hidden node h1 is AND
• final layer operation is h0 − (−h1)

• Power of deep neural networks: chaining of processing steps just as: more Boolean
circuits → more complex computations possible

13



Why “neural” networks?

14



Neuron in the Brain

• The human brain is made up of about 100 billion neurons
Dendrite

Cell body
Node of Ranvier

Axon terminal

Schwann cell

Myelin sheath

Axon

Nucleus

• Neurons receive electric signals at the dendrites and send them to the axon
15



Neural Communication

The axon of the neuron is connected to the dendrites of many other neurons

Neurotransmitter

Synaptic vesicle

Voltage gated Ca2+ channel

Postsynaptic density

Neurotransmitter
transporter

Axon
terminal

Synaptic cleft

Dendrite

Receptor

16



The Brain vs. Artificial Neural Networks

• Similarities

• Neurons, connections between neurons
• Learning = change of connections, not change of neurons
• Massive parallel processing

• But artificial neural networks are much simpler

• computation within neuron vastly simplified
• discrete time steps
• typically some form of supervised learning with massive number of stimuli

17



Error

11

4.5

-5.2

-2.0

-3.7

3.7

-1.
5

2.9

2.9

-4.6

1

0

0.90

0.17 0.76

The output is not exact

• Computed output: ŷ = 0.76

• Correct output: y = 1.0

How do we correct the weights so that the error decreases?

18



Key Concepts

Find minimal training error using non-linear minimization, e.g. by gradient descent:

• error is a function of the weights
• we want to reduce the error
• move towards the error minimum
• gradient descent: compute gradient → get direction to the error minimum
• requires (numerical) derivative of the error function

Adjust weights towards direction of lower error using back-propagation:

• first adjust last set of weights
• propagate error back to each previous layer
• adjust their weights

19



Gradient Descent

w

error(w)

Random

initial

value

ŵ

20



Gradient Descent

r̂0

r̂1

r̂2

r̂3

r̂4

r̂5

21



Derivative of Sigmoid

• Sigmoid function: σ(x) =
1

1 + e−x
• Derivative

d
dx

σ(x) =
d
dx

1
1 + e−x

=
(1 + e−x)× 0 − 1 × (−e−x)

(1 + e−x)2

=
1

1 + e−x
· e−x

1 + e−x

=
1

1 + e−x

(
1 − 1

1 + e−x

)
= σ(x) (1 − σ(x))

22



Final Layer Update

• Linear combination of weights s =
∑

k wkhk

• Activation function ŷ = σ(s)

• We will use L2 error norm: E = (y − ŷ)2/2

• Derivative of error with regard to one weight wk

dE
dwk

=
dE
dŷ

dŷ
ds

ds
dwk

23



Final Layer Update

• Linear combination of weights s =
∑

k wkhk

• Activation function ŷ = σ(s)

• We will use L2 error norm: E = (y − ŷ)2/2

• Derivative of error with regard to one weight wk

dE
dwk

=
dE
dŷ

dŷ
ds

ds
dwk

• Error E is defined with respect to y

dE
dŷ

=
d
dŷ

1
2
(y − ŷ)2 = −(y − ŷ)

23



Final Layer Update

• Linear combination of weights s =
∑

k wkhk

• Activation function ŷ = σ(s)

• We will use L2 error norm: E = (y − ŷ)2/2

• Derivative of error with regard to one weight wk

dE
dwk

=
dE
dŷ

dŷ
ds

ds
dwk

• Activation output ŷ is σ(s):

dŷ
ds

=
d
ds

σ(s) = σ(s) (1 − σ(s)) = ŷ (1 − ŷ)

23



Final Layer Update

• Linear combination of weights s =
∑

k wkhk

• Activation function ŷ = σ(s)

• We will use L2 error norm: E = (y − ŷ)2/2

• Derivative of error with regard to one weight wk

dE
dwk

=
dE
dŷ

dŷ
ds

ds
dwk

• x is a weighted linear combination of hidden node values hk

ds
dwk

=
d

dwk

∑
k

wkhk = hk

23



Putting it All Together

• Derivative of error with regard to one weight wk

dE
dwk

=
dE
dy

dy
ds

ds
dwk

= −(y − ŷ) ŷ (1 − ŷ) hk

• error rate
• derivative of sigmoid: ŷ ′

• Weight adjustment will be scaled by a fixed learning rate µ:

∆wk = µ (t − y) y ′ hk

24



Multiple Output Nodes

Our example only had one output node

But neural networks may have multiple output nodes . . .

• Error is computed over all j output nodes

E =
∑
j

1
2
(yj − ŷj)

2

• Weights k → j are adjusted according to the node they point to

∆wj←k = µ · (yj − ŷj) ŷ
′
j · hk

25



Hidden Layer Update

There is no “true” target output value for the nodes in the hidden layer, so ho do we
update the weights there?

• We can compute how much each node contributed to downstream error
• Definition of error term of each node

δj = (yj − ŷj)ŷ
′
j

• Back-propagate the error term (why this way? there is math to back it up . . . )

δi =

∑
j

wj←iδj

 y ′i

• Universal update formula
∆wj←k = µδjhk

26



Our Example

G

1
F

E

D

1
C

B

A

4.5

-5.2

-2.0

-3.7

3.7

-1.
5

2.9

2.9

-4.6

1

0

0.90

0.17 0.76

• Computed output: ŷ = 0.76
• Correct output: y = 1.0
• Final layer weight updates for learning rate µ = 10

• δG = (y − ŷ)ŷ ′ = (1 − 0.76)× 0.181 = 0.0434
• ∆wGD = µδGhD = 10 × 0.0434 × 0.90 = 0.391
• ∆wGE = µδGhE = 10 × 0.0434 × 0.17 = 0.074
• ∆wGF = µδGhF = 10 × 0.0434 × 1 = 0.434

27



Our Example

G

1
F

E

D

1
C

B

A
4.891

-5.126

-1.5
66

-3.7

3.7

-1.
5

2.9

2.9

-4.6

1

0

0.90

0.17 0.76

• Computed output: ŷ = 0.76
• Correct output: y = 1.0
• Final layer weight updates for learning rate µ = 10

• δG = (y − ŷ)ŷ ′ = (1 − 0.76)× 0.181 = 0.0434
• ∆wGD = µδGhD = 10 × 0.0434 × 0.90 = 0.391, new wGD = 4.891
• ∆wGE = µδGhE = 10 × 0.0434 × 0.17 = 0.074, new wGE = −5.126
• ∆wGF = µδGhF = 10 × 0.0434 × 1 = 0.434, new wGF = −1.566

27



Hidden Layer Updates

G

1
F

E

D

1
C

B

A

4.5

-5.2

-2.0

-3.7

3.7

-1.
5

2.9

2.9

-4.6

1

0

0.90

0.17 0.76

• Hidden node D

• δD =
(∑

j wj←iδj

)
y ′D = wGDδGy

′
D = 4.5 × .0434 × .0898 = .0175

• ∆wDA = µδDhA = 10 × 0.0175 × 1.0 = 0.175
• ∆wDB = µδDhB = 10 × 0.0175 × 0.0 = 0
• ∆wDC = µδDhC = 10 × 0.0175 × 1 = 0.175

28



Hidden Layer Updates

G

1
F

E

D

1
C

B

A

4.5

-5.2

-2.0

-3.7

3.7

-1.
5

2.9

2.9

-4.6

1

0

0.90

0.17 0.76

• Hidden node E

• δE =
(∑

j wj←iδj

)
y ′E = wGEδGy

′
E = −5.2 × 0.0434 × 0.2055 = −0.0464

• ∆wEA = µδEhA = 10 ×−0.0464 × 1.0 = −0.464
• etc.

• this continues until some error criteria are met

28



Some additional aspects

29



Initialization of Weights

• Weights are initialized randomly, e.g. uniformly from interval [−0.01, 0.01]

• Glorot and Bengio (2010) suggest

• for shallow neural networks [
− 1√

n
,

1√
n

]
where n is the size of the previous layer

• for deep neural networks[
−

√
6

√
nj + nj+1

,

√
6

√
nj + nj+1

]

nj is the size of the previous layer, nj+1 the size of the next layer

30



Neural Networks for Classification

• Predict class: one output node per class
• Training data output: “One-hot vector”, e.g. y = (0, 0, 1)T

• Prediction
• predicted class is the output node yi with highest value

• obtain posterior probability distribution by soft-max, softmax(yi ) =
eyi∑
j e

yj
31



Problems with Gradient Descent Training

Too high learning rate

32



Problems with Gradient Descent Training

Bad initialization

33



Problems with Gradient Descent Training

Local optimum

34



Speedup: Momentum Term

• Updates may move a weight slowly in one direction

• To speed this up, we can keep a memory of prior updates . . .

∆wj←k(n − 1)

• . . . and add these to any new updates (with decay factor ρ)

∆wj←k(n) = µδjhk + ρ∆wj←k(n − 1)

35



Adagrad

• Typically reduce the learning rate µ over time

• at the beginning, things have to change a lot
• later, just fine-tuning

• Adapting learning rate per parameter

• Adagrad update: based on error E with respect to the weight w at time
t = gt =

dE
dw

∆wt =
µ√∑t
τ=1 g

2
τ

gt

36



Dropout

• A general problem of machine learning: overfitting to training data (very good on
train, bad on unseen test)

• Solution: regularization, e.g., keeping weights from having extreme values

• Dropout: randomly remove some hidden units during training

• mask: set of hidden units dropped
• randomly generate, say, 10–20 masks
• alternate between the masks during training

• Why does that work? → bagging, ensemble, . . .

37



Mini Batches

• Each training example yields a set of weight updates ∆wi .

• Batch up several training examples

• sum up their updates
• apply sum to model

• Mostly done or speed reasons

38



Vector and Matrix Multiplications

Computational aspects:

• Forward computation: s = Wh

• Activation function: y = σ(s)

• Error term: δ = (y − ŷ) · σ(s)′

• Propagation of error term: δi = Wδi+1 · σ(s)′

• Weight updates: ∆W = µδhT

39



GPU

• Neural network layers may have, say, 200 nodes

• Computations such as s = Wh require 200 × 200 = 40 000 multiplications

• Graphics Processing Units (GPU) are designed for such computations

• Real-time graphics (projections, shading) requires fast vector and matrix
operations

• GPU has massive number of multi-core but lean processing units
• Example: NVIDIA Tesla K20c GPU provides 2496 thread processors, NVIDIA

Tesla V100 GPU provides 5120 of them + 640 tensor cores operating on 4 × 4
matrices

• Extensions to C to support programming of GPUs, such as CUDA

• MATLAB is able to offload computations to GPU if parallel toolbox is installed

40



Toolkits

• Theano

• Tensorflow (Google) — https://playground.tensorflow.org/

• PyTorch (Facebook)

• MXNet (Amazon)

• DyNet

MATLAB: Deep Learning Toolbox

41

https://playground.tensorflow.org/

