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Integrals of trigonometric functions

The derivatives and integrals (as primitive functions) of trigonometric functions are
interconnected:

d
dx

sin ℓx = ℓ cos ℓx ⇒
∫

cos ℓx dx =
1
ℓ
sin ℓx ,

d
dx

cos ℓx = −ℓ sin ℓx ⇒
∫

sin ℓx dx = −1
ℓ
cos ℓx .
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Product of trigonometric functions

Products of two trigonometric functions are expressible as

2 sin ℓx sinmx = cos(ℓ−m)x − cos(ℓ+m)x ,

2 cos ℓx cosmx = cos(ℓ−m)x + cos(ℓ+m)x ,

2 sin ℓx cosmx = sin(ℓ−m)x + sin(ℓ+m)x .

Note

If x ∈ [0, 2π) then for x = ω0t we have t ∈ [0,T ).

We have learnt that trigonometric functions cosωkt and sinωkt form Fourier basis for
T -periodic functions.

Question

Is the basis set of cosmx and sinmx for x ∈ [0, 2π) orthogonal?
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Orthogonal basis

Assume ℓ,m ∈ N.

We will study the scalar inner products of these functions for ℓ ̸= m first:

⟨cos ℓx , cosmx⟩ =
∫ 2π

0
cos ℓx cosmx dx

=
1
2

∫ 2π

0
cos(ℓ−m)x dx +

1
2

∫ 2π

0
cos(ℓ+m)x dx

=
1

2(ℓ−m)

[
sin(ℓ−m)x

]2π

0
+

1
2(ℓ+m)

[
sin(ℓ+m)x

]2π

0

=
0 − 0

2(ℓ−m)
+

0 − 0
2(ℓ+m)

= 0
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Orthogonal basis

⟨sin ℓx , sinmx⟩ =
∫ 2π

0
sin ℓx sinmx dx

=
1
2

∫ 2π

0
cos(ℓ−m)x dx − 1

2

∫ 2π

0
cos(ℓ+m)x dx

=
1

2(ℓ−m)

[
sin(ℓ−m)x

]2π

0
− 1

2(ℓ+m)

[
sin(ℓ+m)x

]2π

0

=
0 − 0

2(ℓ−m)
− 0 − 0

2(ℓ+m)
= 0
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Orthogonal basis

⟨sin ℓx , cosmx⟩ =
∫ 2π

0
sin ℓx cosmx dx

=
1
2

∫ 2π

0
sin(ℓ−m)x dx +

1
2

∫ 2π

0
sin(ℓ+m)x dx

= − 1
2(ℓ−m)

[
cos(ℓ−m)x

]2π

0
− 1

2(ℓ+m)

[
cos(ℓ+m)x

]2π

0

= − 1 − 1
2(ℓ−m)

− 1 − 1
2(ℓ+m)

= 0
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Orthogonal basis

We will study the case ℓ = m separately.

⟨sinmx , cosmx⟩ = 1
2

∫ 2π

0
sin 2mx dx = − 1

4m

[
cos 2mx

]2π

0

= −1 − 1
4m

= 0
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Normalization

Finally the two cases of basis functions that should result in inner product being 1 if
normalised.

⟨cosmx , cosmx⟩ =
∫ 2π

0
cos2 mx dx =

∫ 2π

0

1 + cos 2mx

2
dx

=
1
2

[
x
]2π

0
+

1
2m

[
sin 2mx

]2π

0
= π

|| cosmx ||2 = π ∥ cosmω0t∥2 =
T

2

⟨sinmx , sinmx⟩ =
∫ 2π

0
sin2 mx dx =

∫ 2π

0

1 − cos 2mx

2
dx

=
1
2

[
x
]2π

0
− 1

2m

[
sin 2mx

]2π

0
= π

|| sinmx ||2 = π ∥ sinmω0t∥2 =
T
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Review: Trigonometric Fourier Series

Trigonometric Fourier Series T -periodic signal x(t) representation with ωk = kω0:

x(t) = a0 +
∞∑
k=1

(ak cosωkt + bk sinωkt)

a) basis functions cosωkt, sinωkt

b) DC coefficient a0 =
1
T

∫ T

0
x(t) dt,

c) cosine coeficient

ak =
⟨x(t), cosωkt⟩

⟨cosωkt, cosωkt⟩
=

2
T

⟨x(t), cosωkt⟩ =
2
T

∫ T

0
x(t) cosωkt dt,

d) sine coefficient

bk =
⟨x(t), sinωkt⟩

⟨sinωkt, sinωkt⟩
=

2
T

⟨x(t), sinωkt⟩ =
2
T

∫ T

0
x(t) sinωkt dt.
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Review: Complex Fourier series

Complex Fourier series T -periodic signal representation with ωk = kω0:

x(t) =
∞∑

k=−∞
cke jωk t

a) basis functions ϕk(t) = exp(jωkt),

b) coefficients

ck =
⟨x(t), ϕk(t)⟩
⟨ϕk(t), ϕk(t)⟩

=
1
T
⟨x(t), ϕk(t)⟩ =

1
T

∫ T

0
x(t)e−jωk t dt,

c) completness of basis functions

⟨ϕk(t), ϕℓ(t)⟩ =
1
T

∫ T

0
e jωk te−jωℓt dt = δk,ℓ.

12



Review: Partial sums

a) Fourier series x(t) =
∞∑

k=−∞
cke jωk t

b) Partial sum of Fourier Series xN(t) =
M∑

k=−M

cke jωk t for N = 2M + 1
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From continous to discrete periodic signal

Consider a continuous signal x(t) defined as T -periodical signal, sampled N times
during that period at timestamps t = nT/N for n = 0, 1, 2, . . . ,N − 1. This yields a
discretised signal

x = (x0, x1, x2, . . . , xN−1)

where x is a vector in RN with N components xn = x(nT/N).

The sampled signal x = (x0, x1, x2, . . . , xN−1) can be extended periodically with period
N by modular definition

xm = x(mmodN)

for all m ∈ Z.
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Discrete signal and basis vectors

In order to form the discrete basis vectors we start with exponential basis function

ϕk(t) = e jωk t = e jkω0 = e j2πkt/T

and substitute t → nT/N for n = 0, 1, 2, . . . ,N − 1.

Evaluating at nT/N for varying n yields N components of the basis vector in CN :

ϕk,n ≡ ϕk

(
nT

N

)
= e j2πkn/N .
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Discrete signal and basis vectors

The k-th basis vector ϕk = has the following complex components:

ϕk =



e j2πk·0/N

e j2πk·1/N

e j2πk·2/N

...

e j2πk·(N−1)/N


.
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Inner product if vectors in CN

Definition

On CN the inner product is defined as

⟨x, y⟩ = xTy = x0y0 + x1y1 + . . .+ xN−1yN−1 =
N−1∑
ν=0

xνyν

where y = (y0, y1, . . . , yN−1) is a vector of complex conjugate elements to the original
elements in y = (y0, y1, . . . , yN−1).

The corresponding norm is ||x||2 = ⟨x, x⟩, hence

||x||2 = x0x0 + x1x1 + · · ·+ xN−1xN−1 = |x0|2 + |x1|2 + · · ·+ |xN−1|2 =
N−1∑
ν=0

|xν |2.
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DFT basis — Orthogonality

We can prove that the DFT basis vectors ϕk are orthogonal by verifying that
⟨ϕℓ,ϕm⟩ = 0 for all ℓ ̸= m.

The inner product can be written as

⟨ϕℓ,ϕm⟩ =
N−1∑
ν=0

ϕℓ,νϕm,ν =
N−1∑
ν=0

e j2π(ℓ−m)ν/N =
N−1∑
ν=0

(
e j2π(ℓ−m)/N

)ν
.

We have arrived at partial sum of the first N elements for geometric series.

For ℓ ̸= m we then have

⟨ϕℓ,ϕm⟩ =
1 −

(
e j2π ℓ−m

N

)N

1 − e j2π ℓ−m
N

=
1 − e j2π(ℓ−m)

1 − e j2π ℓ−m
N

=
1 − 1

1 − e j2π ℓ−m
N

= 0.

18



DFT basis — Normalisation

The scaling factor ensures that the DFT basis vectors ϕk are of unit length, i.e. that
||ϕk ||2 = 1 holds.

For our basis vector we have

||ϕk ||2 = ϕk,0ϕk,0 + ϕk,1ϕk,1 + · · ·+ ϕk,N−1ϕk,N−1 = 1 + 1 + . . .+ 1

as ϕk,n = e−j2πkn/N is a complex conjugate to ϕk,n = e j2πkn/N and therefore
ϕk,nϕk,n = e j2πkn/N−j2πkn/N = e0 = 1, which results in the scaling factor being

1
||ϕk ||2

=
1
N
.
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From Fourier Series to Discrete Fourier Transform

Strang (2000):
The Fourier series is linear algebra in infinite dimensions. The “vectors” are
functions f (t); they are projected onto the sines and cosines; that produces the
Fourier coefficients ak and bk . From this infinite sequence of sines and cosines,
multiplied by ak and bk , we can reconstruct f (t). That is the classical case,
which Fourier dreamt about, but in actual calculations it is the discrete Fourier
transform that we compute. Fourier still lives, but in finite dimensions.
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Definition of the DFT and IDFT

Definition (Discrete Fourier Transform)

Let x ∈ CN be a vector (x0, x1, x2, . . . , xN−1). The discrete Fourier transform (DFT)
of x is the vector X ∈ CN with components

Xk = ⟨x,ϕk⟩ =
N−1∑
m=0

xm e−j2πkm/N .

Definition (Inverse Discrete Fourier Transform)

Let X ∈ CN be a vector (X0,X1,X2, . . . ,XN−1). The inverse discrete Fourier
transform (IDFT) of X is the vector x ∈ CN with components

xk =
⟨X,ϕk⟩
⟨ϕk ,ϕk⟩

=
1
N

N−1∑
m=0

Xm e j2πkm/N .
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DC coefficient X0

The coefficient X0/N measures the contribution of the basic waveform (1, 1, 1, . . . , 1)
to x. In fact

X0

N
=

1
N

N−1∑
m=0

xm

is the average value of x.This coefficient is usually called as the DC coefficient, because
it measures the strength of the direct current component of a signal.
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Fourier Transform

The Fourier Transform can be defined for signals that are

• Discrete or continuous in time

• Finite or infinite duration

• Provided we denote the variable in time domain as x(t), or xn, the transformed
variables in frequency domain are correspondingly X (jω) or Xk .

This unification results in four cases.
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An overview of Fourier transforms

continuous in time discrete in time
periodic in frequency

x(t) =
1

2π

+∞∫
−∞

X (jω)ejωt dω x(n) =
T

2π

+π/T∫
−π/T

X (ejωT )ejkωT dω

X (jω) =

∞∫
−∞

e−jωtx(t)dt X (ejωT ) =
∞∑

n=−∞
x(n)e−jkωT

co
nt

in
uo

us
in

fr
eq

ue
nc

y

Fourier transform Fourier transform t = nT (DTFT)

in
fr
eq

ue
nc

y

in
ti
m

e

x(t) =
∞∑

k=−∞
X (k)ejkω0t x(n) =

1

N

N−1∑
k=0

X (k)e(j2π/N)kn

di
sc

re
te

pe
ri
od

ic

X (k) =
ω0

2π

π/ω0∫
−π/ω0

x(t)e−jnω0tdt X (k) =
N−1∑
n=0

x(n)e−(j2π/N)kn

Fourier series Discrete Fourier transform (DFT)
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Linear transform view of discrete Fourier Transform

The DFT consists of inner products of the input sequence (xn)
N−1
n=0 stored as

x = (x0, x1, x2, . . . , xN−1) with N basis vectors ϕk representing sampled complex
sinusoidal sections

ϕk = (ϕk,n)
N−1
n=0 =

(
e j2πkn/N

)N−1

n=0

yielding for k = 0, 1, 2, . . . ,N − 1

Xk = ⟨x,ϕk⟩ = xT ϕk =
N−1∑
m=0

xm ϕk,m =
N−1∑
m=0

xm e−j2πkm/N .
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Linear transform view of discrete Fourier Transform

By collecting the DFT output samples into a column vector, we have


X0

X1

X2
...

XN−1


︸ ︷︷ ︸

X

=



1 1 1 · · · 1

1 ϕ1,1 ϕ1,2 · · · ϕ1,N−1

1 ϕ2,1 ϕ2,2 · · · ϕ2,N−1

...
...

...
. . .

...
1 ϕN−1,1 ϕN−1,2 · · · ϕN−1,N−1


︸ ︷︷ ︸

Φ∗
N


x0

x1

x2
...

xN−1


︸ ︷︷ ︸

x

Finally we can write matrix representation as

X = Φ∗
N x.
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Linear transform view of discrete Fourier Transform

The matrix Φ∗
N = (ΦN)

T denotes the Hermitian transpose of the complex matrix ΦN .
It can be shown that

Φ∗
N ×ΦN =


N 0 0 · · · 0
0 N 0 · · · 0
0 0 N · · · 0
...

...
...

. . .
...

0 0 0 · · · N

 = N · 1

and consequently the inversion of the forward DFT formula in matrix form is

x =
1
N
ΦNX.
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Some practical comments

If the number of digital samples in each time slice is a power of 2, one can use a faster
version of the DFT known as the Fast Fourier transform (FFT).

The FFT assumes that the samples being analyzed comprise one cycle of a periodic
wave. In most cases it is not the case and analysis will contain many spurious
frequencies not actually present in the signal.

Sample fast enough and long enough!

To recognize details in frequency domain use spectral interpolation.
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DFT of real-world signals

Previous DFT examples gave us correct results because the (xn) sequences were
carefully chosen (sinusoids). The DFT of sampled real-world signals provides
frequency-domain results that can be misleading: We will witness so-called spectral
leakage which causes our DFT results to be an approximation of the original spectrum.

Reason: Not all frequencies in the signal are matched by the fixed set of frequencies ωk .

There are ways to minimize leakage, but we can’t eliminate it entirely.
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No spectral leakage
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Spectral leakage
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Zero padding

Zero padding consists of appending zeros to a signal. It maps a length N signal to a
length M > N signal. M does not need to be an integer multiple of N.

Zero padding in the time domain gives spectral interpolation in the frequency domain.

Similarly, zero padding in the frequency domain gives bandlimited interpolation in the
time domain. This is how ideal sampling rate conversion is accomplished.

Usually we use FFT algorithm to compute DFT. FFT requires signals of length M = 2m

which means we chose the number of zeros equal to 2m − N.

33



Zero padding: How does it work?

0 5 10 15 20 25 30 35
0
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1
Hanning window of 32 samples
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What is aliasing?

It is easiest to describe in terms of a visual sampling:

We all know and love movies. If you have ever watched a western and seen the wheel of
a rolling wagon appear to be going backwards, you have witnessed aliasing. The
movie’s frame rate is not adequate to describe the rotational frequency of the wheel,
and our eyes are deceived by the misinformation.

The Nyquist Theorem tells us that we can successfully sample and play back frequency
components up to one-half the sampling frequency.

Aliasing is the term used to describe what happens when we try to record and play back
frequencies higher than one-half the sampling rate.
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Aliasing due to insufficient sampling

The following figure illustrates what happens if a signal is sampled at regular time
intervals that are slightly below the period of the original signal.
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0

1

t [s]

si
n

2π
·1

2t
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Sampling and Aliasing

Definition (Nyquist-Shannon Sampling Theorem, 1927)
It is possible precisely to reconstruct a continuous-time signal from its samples, given
that

a) the signal is bandlimited;

b) the sampling frequency fs is greater than twice the signal bandwidth.
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What is aliasing?

Example (Aliasing)
Consider a digital audio system with a sample rate of 48 kHz, recording a steadily
rising sine wave tone. At lower frequency, the tone is sampled with many points per
cycle. As the tone rises in frequency, the cycles get shorter and fewer and fewer points
are available to describe it. At a frequency of 24 kHz, only two sample points are
available per cycle, and we are at the limit of what Nyquist theorem says we can do.

Still, those two frequency points are adequate, in a theoretical world, to recreate the
tone after conversion back to analog signal and low-pass filtering.

But what happens if the tone frequency rises further?
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What is aliasing?

If the tone continues to rise, the number of samples per cycle is not sufficient to
describe the waveform. This inadequate description is equivalent to another one that
describes a lower frequency tone – this is aliasing.

In fact, the tone seems to “reflect” around the 24 kHz point:

• A 25 kHz tone becomes indistinguishable from a 23 kHz tone.

• A 30 kHz tone becomes an 18 kHz tone.
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Example: Aliasing in Audio

• The initial sound is a numerically synthesized piano-tone at 440Hz. The sampling
frequency is of 44.1 kHz (CD-quality).

• The harmonic frequencies at multiple of the fundamental tone (440 Hz) are clearly
visible.
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Aliasing in Audio

• The sound will be resampled at 2 kHz, without precautions against aliasing. The
tone sounds rather strange.

• The aliasing is visible on the graphs as a “warping” of the frequencies against a
“mirror” at the Nyquist frequency 1 kHz.
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Aliasing in Audio

• In order to avoid aliasing, the spectrum of the signal should be zero at frequencies
higher than the Nyquist frequency before resampling. A low-pass filter is used to
achieve this.
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Aliasing and DFT

. . . for a digital signal processing with DFT there are limits:

• The signal must be band-limited. This means there is a frequency above which the
signal is zero.

• Hence the maximum useable frequency in the DFT is fs/2 - the Nyquist1

frequency!

1Harry Nyquist 1889-1976 43
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