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Matlab Session 4.1 — Application of the DFT

Consider the analog signal

x(t) = 2.0 cos(2π 5t) + 0.8 sin(2π 12t) + 0.3 cos(2π 47t)

on the interval t ∈ [0, 1). Sample this signal with period T = 1/128 s and obtain
sample vector x = (x0, x1, x2, . . . , x127).

a) Create a MATLAB m-file which plots signals x(t) and x

b) Using the definition of the DFT from the last lecture find X.

c) Use the MATLAB function fft(x) to compute DFT of X.

d) Make a MATLAB m-file which computes the DFT of x and plots the signal and its
spectrum.

e) Compute the IDFT of the X and compare it with the original signal x(t).
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Matlab Session 4.1 — Input signal plots
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Matlab Session 4.1 — Solution (1/3)

clear
% The "continuous" original signal
t = linspace(0,1,1001);
x = 2.0*cos(2*pi*5*t) + 0.8*sin(2*pi*12*t) + 0.3*cos(2*pi*47*t);
% The sampled signal
N = 128; % number of samples
ts = linspace(0,1,N+1); % the last sample is at t=1
ts(end) = []; % now we have N time samples
xs = 2.0*cos(2*pi*5*ts) + 0.8*sin(2*pi*12*ts) + 0.3*cos(2*pi*47*ts);
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Matlab Session 4.1 — Solution (2/3)

figure(1);
subplot(2,1,1);
plot(t,x,’LineWidth’,2.5,’Color’,[1 0 0]);
grid on;
subplot(2,1,2);
plot(ts, xs,’o’,’LineWidth’,2.0,’Color’,[0 0 1]);
hold on;
plot(t,x,’--’,’Color’,[1 0 0]);
grid on;
legend(’Discrete␣signal␣x(n)’,’Continuous␣signal␣x(t)’);
hold off;
pause
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Matlab Session 4.1 — Solution (3/3)

Computing X using the definition of the DFT is not so complicated:

X = zeros(N,1);
for k=0:(N-1)

% Sum of N basis function samples forms X_k
xk = 0;
for m=0:(N-1) % Note: ‘m‘ goes from 0, but MATLAB indexes from 1

% Note: −1j denotes the imaginary unit
xk = xk + xs(m+1)*exp(-1j*2*pi*k*m/N); % Matlab indexes start at 1

end
X(k+1) = xk;

end

Q: How many times will the xk update code be executed?
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Stationarity and Non-stationarity

In its original sense, (non)stationarity is a property of stochastic processes:

Definition (Stationarity)
A stochastic process is said to be stationary if its unconditional joint probability
distribution does not change when shifted in time. Consequently, its parameters such
as mean and variance do not change over time.

A signal is an observation of events that correspond to a result of some process. If the
properties of the process that generates the events do not change in time, then the
process is stationary.

In such a case we (not quite correctly) say that the signal is stationary.
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Stationary and Non-stationary dynamic systems

Non-stationary systems ⇔ differential/difference equations with time-varying
coefficients, e.g.,

d2

dt2
y(t)− t y(t) = 0.

Solution for this particular case is Airy’s functions

Ai(t) =
1
π

∫ ∞

0
cos

(
τ3

3
+ tτ

)
dτ

Bi(t) =
1
π

∫ ∞

0

[
exp

(
−τ3

3
+ tτ

)
+ sin

(
τ3

3
+ tτ

)]
dτ

Signal y(t) is an output of a non-stationary process/system ⇒ we say that the signal is
non-stationary.
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Non-stationary signals example: Airy’s functions
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Stationary and non-stationary dynamic systems

Stationary systems ⇔ differential/difference equations with constant coefficients, e.g.,

d2

dt2
y(t) + ω2

0 y(t) = 0.

For this particular case the solution is a harmonic wave

cosω0t, sinω0t

Signal y(t) is an output of a stationary process/system ⇒ we say that the signal is
stationary.
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Stationary signals example: Harmonic signals
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Stationary and Non-stationary signals

A deterministic signal is said to be stationary if it can be written as a discrete sum of
cosine waves or exponentials:

x(t) = A0 +
N∑

k=1

Ak cos(ωkt +Φk)

x(t) =
N∑

k=−N

Cke jωk t+Φk

i.e. as a sum of elements which have constant instantaneous amplitude and
instantaneous frequency.
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Stationary and Non-stationary signals

In the discrete case, a sequence (xn)n assumed to be sampled from an output of a
random process is said to be wide-sense stationary (or stationary up to the second
order) if its variance is independent of time:

∀m : var(X(m:m+M)) = E [(x − µ)2] =
1

M − 1

M∑
k=m

(xk − µ)2 = σ2

Here, the population mean µ is always computed over the corresponding slice
m : m +M.
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Stationary and Non-stationary signals

A signal is said to be non-stationary if one of these fundamental assumptions is no
longer valid, e.g. either variance σ2, or autocorrelation ϱxx(n, n,m), or both are
time-varying.

For example:

• a finite duration signal, and in particular a transient signal (for which the length is
short compared to the observation duration), is non-stationary.

• speech and EEG are non-stationary signals.

• however, in specific situations may short time sections of EEG be considered
stationary.
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Nonlocality of DFT

DFT assumes the signal is stationary. It cannot detect local frequency or phase changes.

Example (Frequency hop)

Consider two different periodic signals f (t) and g(t) defined on 0 ≤ t < 1 with
frequencies f1 = 96 Hz and f2 = 235 Hz as follows:

• f (t) = 0.5 sin(2πf1t) + 0.5 sin(2πf2t)

• g(t) =

sin(2πf1t) for 0 ≤ t < 0.5,

sin(2πf2t) for 0.5 ≤ t < 1.0.

Use the sampling frequency fs = 1000 Hz to produce sample vectors f and g.
Compute the DFT of each sampled signal.
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Nonlocality of DFT

Two different signals f (t) and g(t) are constructed with Matlab commands

Fs = 1000; % sampling frequency
f1 = 96;
f2 = 235;
t1 = (0:499)/Fs; % time samples for ‘g1‘
t2 = (500:999)/Fs; % time samples for ‘g2‘
t = [t1 t2]; % time samples for ‘f‘
f = 0.5*sin(2*pi*f1*t)+0.5*sin(2*pi*f2*t);
g1 = [sin(2*pi*f1*t1) zeros(1,500)];
g2 = [zeros(1,500) sin(2*pi*f2*t2)];
g = g1+g2;
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Magnitude of DFT for f (t) and g(t)
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Nonlocality of DFT

• It is obvious that each signal contains dominant frequencies close to 96 Hz and
235 Hz and the magnitudes are fairly similar.

• But: The signals f (t) and g(t) are quite different in the time domain!

• The example illustrates one of the shortcomings of traditional Fourier transform:
nonlocality or global nature of the basis vectors wN or its constituting analog
waveforms e j2πkt/T .
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Detail of signal g(t)
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Nonlocality of DFT

Summary:

• Discontinuities are particularly troublesome.

• The signal g(t) consists of two sinusoids only, but the excitation of several Gks in
frequency domain around the dominant frequencies gives the impression that the
entire signal is more oscillatory.

• We would like to have possibility to make the frequency analysis more local — e.g.
by analysing smaller portions of the signal.
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What is wrong with Fourier Transform?

Consider basis functions sinωkt, cosωkt and δ(t) and their support:

support region in time in frequency

sinωkt (−∞,∞) 0
cosωkt (−∞,∞) 0
δ(t) 0 (−∞,∞)

• The basis functions sinωkt and cosωkt cannot localize time!

• The δ(t) cannot localize frequency!

To localize changes in the signal in time domain by FFT we need to look at shorter
parts of the signal — time windows.
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DFT of long signals

Computing DFT of long signals is unfeasible:

• When sampling an audio signal at a sampling rate 44.1 kHz, 1 hour of stereophonic
music would be 44 100 × 2 × 60 × 60 = 317 520 000 samples!

• If we want to compute DFT, the closest power-of-two FFT is 228 = 268 435 456
per channel.

• A better approach is to break the long signal into small segments and analyze each
one with FFT

These requirements led to development of windowed version of Fourier transform — the
short-time Fourier transform, STFT.
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Windowing

Consider a sampled signal x ∈ CN , indexed from 0 to N − 1. We wish to analyse the
frequencies present in x, but only within a certain time range. We choose integers
m ≥ 0 and M such that m +M ≤ N and define a vector w ∈ CN as

wk =

1 for m ≤ k ≤ m +M − 1

0 otherwise

We use w to define a new vector y with components

yk = wkxk for 0 ≤ k ≤ N − 1.

We use notation y = wx and refer to the vector w as the (rectangular) window.
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Windowing

Proposition

Let x and w be vectors in CN with discrete Fourier transforms X and W, respectively.
Let y = wx have DFT Y. Then

Y =
1
N

X ∗ W,

where ∗ is circular convolution in CN .

Definition (Circular convolution)
The n-th element of an N-point circular convolution of N-periodic vectors X and W is

Yn =
1
N

N−1∑
m=0

XmW(n−m)modN .
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Windowing

Definition
When processing a non-stationary signal we assume that the signal is short-time
stationary and we perform a Fourier transform on these small blocks — we multiple
the signal by a window function that is zero outside the defined “short-time” range.

Main problem: spectral leakage

Competing properties:

• high resolution — ability to distinguish close frequencies

• high dynamic range — ability to distinguish frequencies with different amplitudes
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Windowing

Definition (Rectangular window)
The rectangular window is defined as:

wn =

1 for 0 ≤ n < N

0 otherwise

The Matlab command rectwin(N) produces the N-point rectangular window.

High resolution × low dynamic range: good separation of similar amplitudes for similar
frequencies, poor at distinguishing far away frequencies of different amplitudes.
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Windowing

Definition (Hamming window)
The most common windowing function in speech analysis is the Hamming window:

wn =

0.54 + 0.46 cos
(

2πn
N − 1

)
for 0 ≤ n < N

0 otherwise

Matlab command hamming(N) produces the N-point Hamming window.

A frequently used form of Hann window, better dynamic range at the cost of some
resolution.
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Windowing

Definition (Blackman window)
Another common type of window is the Blackman window:

wn =

0.42 + 0.5 cos
(

2πn
N − 1

)
+ 0.08 cos

(
4πn
N − 1

)
for 0 ≤ n < N

0 otherwise

Use blackman(N) to produce the N-point Blackman window.

Better dynamic range than Hamming at the cost of some resolution.
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Windowing result
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Matlab Session 4.2
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Matlab Session 4.2 — Windowing (1/3)

Consider signal f (t) = sin(2πf1t) + 0.4 sin(2πf2t) defined on 0 ≤ t ≤ 1 with
frequencies f1 = 137 Hz and f2 = 147 Hz:

a) Use Matlab to sample f (t) at N = 1000 points tk = {k/fs}Nk=0 with sampling
frequency fs = 1000 Hz

N = 1000; % number of samples
Fs = 1000; % sampling frequency
f1 = 137; % 1. frequency
f2 = 147; % 2. frequency
tk = (0:(N-1))/Fs; % sampling times
f = sin(2*pi*f1*tk) + 0.4*sin(2*pi*f2*tk); % sampled signal
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Matlab Session 4.2 — Windowing (2/3)

b) Compute the DFT of the signal with F=fft(f) resp. F=fft(f,N).
Consult the Matlab documentation and explain the difference!

c) Display the magnitude of the Fourier transform with plot(abs(F(0:501))

d) Construct a rectangular windowed version of f (n) for window length 200 with

fwa = f;
fwa(201:1000) = 0.0;

e) Compute the DFT of fwa and display the magnitude of the first 501 components.

f) Can you distinguish the two constituent frequencies?
Be careful: is it really obvious that the second frequency is not a side lobe leakage?
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Matlab Session 4.2 — Windowing (3/3)

g) Construct a windowed version of f (n) of length 200 with

fwb = f(1:200);

h) Compute the DFT and display the magnitude of the first 101 components.

i) Can you distinguish the two constituent frequencies? Compare the plot of fwb with
the DFT of fwa.

j) Repeat the parts d)–h) using other window lengths such as 300, 100 or 50. How
short can the time window be and still allow resolution of the two constituent
frequencies?

k) Does it matter whether we treat the windowed signal as a vector of length 1000 as in
part d) or shorter vector as in part g)? Does the side lobe energy confuse the results?
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Short Time Fourier Transform

• Assume that (xn)∞n=0 is an infinitely long sequence

• In order to localize energy in both time and frequency we segment the signal into
short-time pieces and calculate DFT of each segment

• Sampled STFT for a window (wm)
M−1
m=0 defined in the region 0 ≤ m ≤ M − 1 is

given by

Xk,ℓ =
M−1∑
m=0

wm · xℓ−m e−j2π km
N
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Short Time Fourier Transform
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Short Time Fourier Transform
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Spectrograms

In MATLAB the command

spectrogram(x,window,noverlap,nfft,fs,’yaxis’)

performs short-time Fourier transform and plots a 2D frequency-time diagram, where

• x is the signal specified by vector x.

• if window is an integer, x is divided into segments of length equal to that integer
value

• otherwise, window is a Hamming window of length nfft

• noverlap is the number of samples each segment of x overlaps
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Spectrograms
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Spectrograms

In MATLAB the command

spectrogram(x,window,noverlap,nfft,fs,’yaxis’)

performs short-time Fourier transform and plots a 2D frequency-time diagram, where

• nfft is the FFT length and is the maximum of 256 or the next power of 2 greater
than the length of each segment of x

• fs is the sampling frequency, which defaults to normalized frequency

• using ’yaxis’ displays frequency on the y -axis and time on the x-axis
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Spectrograms

In MATLAB the command

spectrogram(x,window,noverlap,nfft,fs,’yaxis’)

performs short-time Fourier transform and plots a 2D frequency-time diagram.

In current Matlab versions, the colorbar command is automatically issued to append a
color scale to the current axes.
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DFT — Chirp signal analysis sin(2π(f0 + αt)t)
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STFT — Chirp signal analysis sin(2π(f0 + αt)t)
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DFT — Analysis of cos(2π(100 + 20 cos 2πt)t)
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STFT — Analysis of cos(2π(100 + 20 cos 2πt)t)
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Assignment 3.1 — Analysis of audio signal

• Start MATLAB. Load in the “ding” audio signal with command
audioread(’ding.wav’) and store it in y. In case that the WAV file is not present
on your computer, a copy is available for download from 11MAI website.
The audio signal is stereo one and can be decoupled into two channels by
y1=y(:,1); y2=y(:,2);. The sampling rate Fs is 22 050 Hz, and the signal
contains 20 191 samples. If we consider this signal as sampled on an interval [0,T ),
then T = 20191/22050 ≈ 0.9157 seconds.

• Compute the DFT of the signal with Y1=fft(y1); and Y2=fft(y2);. Display the
magnitude of the Fourier transform with plot(abs(Y1)) or plot(abs(Y2)). The
DFT is of length 20 191 and symmetric about center.
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Assignment 3.1 — Analysis of audio signal

• Use the data cursor button on plot window to pick out the frequency and amplitude
of the two (obviously) largest components in the spectrum. Compute the actual
value of each significant frequency in Hertz.

• Note:

• Since MATLAB indexes from 1, the DFT coefficient Yk is actually Y(k+1) in
MATLAB! Therefore, Yk corresponds to frequency fk = k/T = k/0.9157 and
Y(k) corresponds to fk−1 = (k − 1)/T = (k − 1)/0.9157.

• The DFT of real-valued signal is symmetrical around fs/2. You can plot only the
first half of the DFT with plot(abs(Y1(1:6441))) or
plot(abs(Y2(1:6441))).
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Assignment 3.1 — Analysis of audio signal

• Let f1, f2 denote these two largest frequencies in Hertz, and let A1,A2 denote the
corresponding amplitudes from the plot. Define these variables in MATLAB as f1,
f2, and A1, A2.

• Generate a new signal y12 using only these frequencies, sampled at fs = 22 050 Hz
on the interval [0, 1) with

t = [0:1/Fs:1]; % time span
y12 = (A1*sin(2*pi*f1*t) + A2*sin(2*pi*f2*t)); % new signal
y12 = y12/(A1+A2); % normalization to [−1,1]
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Assignment 3.1 — Analysis of audio signal

• Play the original sound with sound(y1, Fs) and the synthesized version with
sound(y12, Fs). Repeat the experiment with sound of the second channel y2.

• Note that our synthesis does not take into account the phase information at these
frequencies. Is there any other property of the original signal that is ignored by our
synthesis?

• Does the artificial generated signal reproduce ding.wav correctly? Compare the
quality!
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Assignment 3.2 — Analysis of audio signal

a) Repeat the parts a)–k) from the Matlab Session 4.2, but this time using a triangular
window.

b) A triangular window vector w of length L = 201 can be constructed using

L = 201;
w = triang(L);

c) Construct a windowed signal of the length 1000 as

fwc = zeros(size(f));
fwc(1:L) = f(1:L).*w;

and compute its spectrum using fft(fwc).
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Assignment 3.2 — Analysis of audio signal

d) Try varying the window length L. What is the shortest window that allows you to
distinguish the two requencies?

e) Repeat the parts a)–k) from the Matlab Session 4.2 for the Hamming window.

f) Summarise the answers to the questions raised in Matlab Session 4.2 for rectangular,
triangular, and Hamming windows as a part of your report.
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Homework rules

Submit your report by Tuesday, November 1, 2021 using the web page
http://zolotarev.fd.cvut.cz/mni

Solution report should be formally correct (structuring, grammar).

Images should be vectors, not bitmaps.

Only .pdf files are acceptable. Handwritten solutions and .doc and .docx files will not
be accepted.

Solutions written in TEX (using LyX, Overleaf, whatever) may receive small bonification.
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