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Review — Model flexibility

We collect a set of data (n = 100 observations) containing a single predictor x and a
quantitative response y . We then fit a linear regression model to the data, as well as a
separate cubic regression, i.e., y = β0 + β1x + β2x

2 + β3x
3 + ϵ.

a) Suppose that the true relationship between x a y is linear, i.e., y = β0 + β1x + ϵ.
Consider the training residual sum of squares (RSS) for the linear regression, and
also the training RSS for the cubic regression. Would we expect one to be lower
than the other, would we expect them to be the same, or is there not enough
information to tell? Justify your answer.

b) Answer a) using RSS on a testing set rather than training RSS.
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Review — Model flexibility

c) Suppose now that the true relationship between x a y is non-linear, but we don’t
know how much non-linear it is. Consider the training RSS for the linear
regression, and also the training RSS for the cubic regression. Would we expect
one to be lower than the other, would we expect them to be the same, or is there
not enough information to tell? Justify your answer.

d) Answer c) using RSS on a testing set rather than training RSS.
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Matlab Session 7.1
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Matlab Session 7.1 — Stock market data

Is there a way to seriously predict the development of a stock market index?

Let’s start with selected historical daily data of S&P between 2001–2005.

Read and display the general characteristics

smarket = readtable(’islr_smarket.csv’);
summary(smarket)

The Direction is a categorical variable (either Up or Down) and we have to tell that to
Matlab:

smarket.Direction = categorical(smarket.Direction)
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Matlab Session 7.1 — Stock market data

We might be interested in correlations between different numerical variables in the data.
Matlab has the corrcoef() function exactly for this purpose . . .

corrcoef(smarket)

. . . but the input has to be a matrix:

smarket_matrix = table2array(smarket(:,2:end-1))
smarket_cc = corrcoef(smarket_matrix);

Explain, why we index smarket(:,2:end-1).

Can you find some values in the correlation matrix indicating a correlation between some
columns? If yes, to which variables do these columns correspond?
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Matlab Session 7.1 — Stock market data

We might be interested in correlations between different numerical variables in the data.
Matlab has the corrcoef() function exactly for this purpose . . .
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. . . but the input has to be a matrix:

smarket_matrix = table2array(smarket(:,2:end-1))
smarket_cc = corrcoef(smarket_matrix);

Explain, why we index smarket(:,2:end-1).
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plot(smarket.Volume)

Based on the graph data explain why are Year and Volume positively correlated. 7



Matlab Session 7.1 — Stock market data

Let’s now train a generalised linear model of Direction as a function of Lag1 through
Lag5. The logistic model can be specified using ’Distribution’, ’binomial’:

mdl = fitglm(smarket,
’Direction␣~␣Lag1+Lag2+Lag3+Lag4+Lag5+Volume’,
’Distribution’, ’binomial’)

Which regression coefficient has the smallest p-value? Does this value suggest a strong
influence on the model output?
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Matlab Session 7.1 — Stock market data

Have a look at the model prediction on the original data:

probs = predict(mdl)

The quality of the model can be assessed by comparing the model prediction with the
training values stored in Direction. But first we have to convert probs to categorical
values Up and Down:

predictions = repmat(categorical({’Down’}), mdl.NumObservations, 1);
predictions(probs>0.5) = ’Up’; %

We continue with the confusion matrix:

confusionmat(predictions,smarket.Direction)
(507+145)/1250
mean(predictions == smarket.Direction)
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Matlab Session 7.1 — Stock market data

Is our model better than a random choice? What is its training error?

A significantly better estimate of a real model error can be obtained by splitting the
data into training and testing datasets. Let’stry to fit the model to 2001–2004 data and
verify it on data from 2005.

train = (smarket.Year<2005); % Boolean column vector of true/false
smarket_train = smarket(train,:);
smarket_test = smarket(~train,:);

What does smarket(train,:), and smarket(~train,:) mean?

How large are the training and testing datasets?

size(smarket_train)
size(smarket_test)
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Matlab Session 7.1 — Stock market data

Fit the model to the training data and verify it on data from 2005:

mdlt = fitglm(smarket_train,
’Direction␣~␣Lag1+Lag2+Lag3+Lag4+Lag5+Volume’,
’Distribution’, ’binomial’)

probs = predict(mdlt, smarket_test); % Test set data
% Conversion to Up/Down
predictions = repmat(categorical({’Down’}),mdlt.NumObservations,1);
predictions(probs>0.5) = ’Up’;
% Confusion matrix and the percentage of correct predictions
confusionmat(predictions, smarket_test.Direction)
mean(predictions == smarket_test.Direction)

How large is the test set error?
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Matlab Session 7.1 — Stock market data

Let us fit the model using only Lag1 and Lag2, which had the strongest predictive
power in the original logistic regression:

mdlt = fitglm(smarket_train,
’Direction␣~␣Lag1+Lag2’,
’Distribution’, ’binomial’)
probs = predict(mdlt, smarket_test);
predictions = repmat(categorical({’Down’}),252,1);
predictions(probs>0.5) = ’Up’;
confusionmat(predictions, smarket_test.Direction)
mean(predictions == smarket_test.Direction)

Did the testing error estimate improve now? What is the probability of market increase?
What about market decrease? And what about some simple strategies?
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Matlab Session 7.1 — Stock market data

Finally, we will compute predictions for new values Lag1 and Lag2 given by the
following table:

Lag1 Lag2

1,2 1,1
1,5 −0,8

% Create a new data table for the two data records
pt = table([1.2;1.5], [1.1;-0.8], ’VariableNames’, {’Lag1’, ’Lag2’});
% Evaluate the model ‘mdlt2‘ on data from ‘pt‘
predict(mdlt2, pt)’

Instead of using a Matlab table we could use the pt directly in a matrix form. How can
we do it?
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The Bootstrap

Definition (Bootstrap)
The bootstrap is a flexible and powerful statistical tool that can be used to quantify
the uncertainty associated with a given estimator or statistical learning method.

For example, it can provide an estimate of the standard error of a coefficient, or a
confidence interval for that coefficient.

• This is not really necessary for linear regression (why?)

• But it can be easily applied to a wide range of other statistical learning methods
where a measure of variability is difficult to obtain
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Where does the name came from?

The use of the term bootstrap derives from the phrase to pull oneself up by one’s
bootstraps, widely thought to be based on one of the eighteenth century “The
Surprising Adventures of Baron Munchausen” by Rudolph Erich Raspe:

The Baron had fallen to the bottom of a deep lake. Just when it looked like
all was lost, he thought to pick himself up by his own bootstraps.

• It is not the same as the term “bootstrap” used in computer science meaning to
“boot” a computer from a set of core instructions, though the derivation is similar.

• It is unrelated to Twitter Bootstrap, a framework for web development.
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The Bootstrap: Simple example

Let’s start with a simple example:

• Suppose that we wish to invest a fixed sum of money in two financial assets that
yield returns of X and Y , respectively, where X and Y are random quantities.

• We will invest a fraction α of our money in X , and will invest the remaining 1 − α

in Y .
• We wish to choose α to minimize the total risk (expressed as variance), of our

investment. In other words, we want to minimize var(αX + (1 − α)Y ).
• One can show that the value that minimizes the risk is given by

α =
σ2
Y − σXY

σ2
X + σ2

Y − 2σXY
,

where σ2
X = var(X ), σ2

Y = var(Y ), and σXY = cov(X ,Y ).
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Example continued

• We have from the previous slide

α =
σ2
Y − σXY

σ2
X + σ2

Y − 2σXY
,

but the values of σ2
X , σ2

Y , and σXY are unknown.

• We can compute estimates for these quantities, σ̂2
X , σ̂2

Y and σ̂XY , using a data set
that contains measurements for X and Y .

• We can then estimate the value of α that minimizes the variance of our investment
using

α̂ =
σ̂2
Y − σ̂XY

σ̂2
X + σ̂2

Y − 2σ̂XY
.
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Example continued

Each panel displays 100 simulated
returns for investments X and Y .
From left to right and top to bottom,
the resulting estimates for α are equal
to 0.576, 0.532, 0.657, and 0.651.
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Example continued

To estimate the standard deviation of α̂, we repeat the process of simulating 100 paired
observations of X and Y , and estimating α 1000 times. We obtain 1000 estimates for
α: α̂1, α̂2, . . . , α̂1000.

• The mean over all 1000 estimates for α is

ᾱ =
1

1000

1000∑
r=1

α̂r = 0.5996,

and the standard deviation of the estimates is√√√√ 1
1000 − 1

1000∑
r=1

(α̂r − ᾱ)2 = 0.083.

• This gives us a very good idea of the accuracy of α̂: SE(α̂) ≈ 0.083.
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Example continued

• The value of SE(α̂) ≈ 0.083 suggests that, for a random sample from the
population, we would expect α̂ to differ from the unknown α by approximately
0.08, on average.

• The left-hand panel of the Figure on slide 22 displays a histogram of the resulting
estimates.

• For these simulations the parameters were set to σ2
X = 1, σ2

Y = 1.25 a σXY = 0.5,
and so we know that the true value of α is 0.6 (indicated by the red line).

• Remember that our estimated value of α from 1000 samples is ᾱ = 0.5996, which
is pretty close.

21



Results

Left: A histogram of the estimates of α obtained by generating 1000 simulated data
sets from the true population. Center: A histogram of the estimates of α obtained from
1000 bootstrap samples from a single data set. Right: The estimates of α displayed in
the left and center panels are shown as boxplots. In each panel, the pink line indicates
the true value of α. 22



Now back to the real world

• The procedure outlined above cannot be applied, because for real data we cannot
generate new samples from the original population.

• However, the bootstrap approach allows us to use a computer to mimic the
process of obtaining new data sets, so that we can estimate the variability of our
estimate without generating additional samples.

• Rather than repeatedly obtaining independent data sets from the population, we
instead obtain distinct data sets by repeatedly sampling observations from the
original data set with replacement.

• Each of these “bootstrap data sets” is created by sampling with replacement, and
is the same size as our original dataset. As a result some observations may appear
more than once in a given bootstrap data set and some not at all.
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Example with just 3 observations

A graphical illustration of the bootstrap
approach on a small sample containing
n = 3 observations.

Each bootstrap data set contains n

observations, sampled with replacement
from the original data set.

Each bootstrap data set is used to obtain
an estimate of α.
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• Denoting the first bootstrap data set by Z ⋆1, we use Z ⋆1 to produce a new
bootstrap estimate for α, which we call α̂⋆1.

• This procedure is repeated B times for some large value of B (say 100 or 1000), in
order to produce B different bootstrap data sets, Z ⋆1,Z ⋆2, . . . ,Z ⋆B , and B

corresponding α estimates: α̂⋆1, α̂⋆2, . . . , α̂⋆B .

• We estimate the standard error of these bootstrap estimates using the formula

SEB(α̂) =

√√√√ 1
B − 1

B∑
r=1

(α̂⋆r − ¯̂α⋆)2.

• This serves as an estimate of the standard error of α̂, estimated from the original
data set. See centre and right panels of Figure on slide 22. Bootstrap results are in
blue. For this example SEB(α̂) = 0.087.
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A general picture for the bootstrap
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The bootstrap in general

• In more complex data situations, figuring out the appropriate way to generate
bootstrap samples can require some thought.

• For example, if the data is a time series, we can’t simply sample the observations
with replacement (why not?).

• We can instead create blocks of consecutive observations, and sample those with
replacements. Then we paste together sampled blocks to obtain a bootstrap
dataset.

27
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Other uses of the bootstrap

• Primarily used to obtain standard errors of an estimate.

• Also provides approximate confidence intervals for a population parameter. For
example, looking at the histogram in the middle panel of the Figure on slide 22, the
5% and 95% quantiles of the 1000 values are equal to 0.43 and 0.72, respectively.

• This represents an approximate 90% confidence interval for the true α. How do
we interpret this confidence interval?

• The above interval is called a Bootstrap Percentile confidence interval. It is the
simplest method (among many approaches) for obtaining a confidence interval
from the bootstrap.
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Can the bootstrap estimate prediction error?

• In cross-validation, each of the K validation folds is distinct from the other K − 1
folds used for training: there is no overlap. This is crucial for its success. Why?

• To estimate prediction error using the bootstrap, we could think about using each
bootstrap dataset as our training sample, and the original sample as our validation
sample.

• But each bootstrap sample has significant overlap with the original data. About
two-thirds of the original data points appear in each bootstrap sample. Can you
prove this?

• This will cause the bootstrap to seriously underestimate the true prediction error.
Why?

• The other way around — with original sample = training sample, bootstrap
dataset = validation sample — is worse!
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Removing the overlap

• Can partly fix this problem by only using predictions for those observations that did
not (by chance) occur in the current bootstrap sample.

• But the method gets complicated, and in the end, cross-validation provides a
simpler and more attractive approach for estimating prediction error.
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Matlab Session 7.2
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Matlab Session 7.2 — Bootstrap

We will first replicate the process of estimating the α statistics on islr_portfolio
data.

In the second part we will estimate the Bootstrap Percentile confidence interval of the
estimated α∗.
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Matlab Session 7.2 — Reading the data

Read in the portfolio dataset. The first column contains row names and we have to
read them as such, otherwise an extra variable will appear, automatically named Var1.

tbl = readtable(’islr_portfolio.csv’, ’ReadRowNames’, true);

Like many function from the Statistical Toolbox, Matlab’s bootstrap() requires
input data to be a scalar, column vector or matrix. Table is not accepted.

We have to convert the data table to a matrix:

portfolio = table2array(tbl);
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Matlab Session 7.2 — Bootstrap for α

Run the bootstrap sampling for 1000 different datasets resampled from the original
Portfolio dataset and estimate the alpha coefficient

N = 1000;
alpha_boot = bootstrp(N, @mai_71_alpha, portfolio);

The expected value would be the mean of all bootstrapped alphas

alpha_est = mean(alpha_boot);

And we can estimate the standard error

alpha_se = std(alpha_boot);

We can also get the bounds, i.e. minimum and maximum, although they are probably
of minimal importance here

[alpha_min, alpha_max] = bounds(alpha_boot);
34
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