
From Fourier Series to Analysis of

Non-stationary Signals – I
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Factoring Polynomials



Fundamental Theorem of Algebra

aaaaaa
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Fundamental Theorem of Algebra

Theorem (Fundamental Theorem of Algebra)
Every nth-order polynomial possesses exactly n complex roots

This is a very powerful algebraic tool. It says that given any

polynomial

Pn(x) = anx
n + an−1x

n−1 + · · ·+ a2x
2 + a1x + a0

≡
n∑

i=0

aix
i ,
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Fundamental Theorem of Algebra

we can always rewrite it as

Pn(x) = an(x − xn)(x − xn−1) · · · (x − x2)(x − x1)

≡ an

n∏
i=1

(x − xi )

where the points xi are the polynomial roots and they may be real

or complex.

4



Fundamental Theorem of Algebra

Example (Roots)
Consider the second-order polynomial

P2(x) = x2 + 7x + 12.

The polynomial is second-order because the highest power of x is 2

and is also monic because its leading coefficient of x2, is a2 = 1.

By the fundamental theorem of algebra there are exactly two roots

x1 and x2, and we can write

P2(x) = (x − x1)(x − x2).

Show that the roots are x1 = −3 and x2 = −4.
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Factoring Polynomials

The factored form of this simple example is

P2(x) = x2 + 7x + 12 = (x − x1)(x − x2) = (x + 3)(x + 4).

Note that polynomial factorization rewrites a monic nth-order

polynomial as the product of n first-order monic polynomials, each

of which contributes one root (zero) to the product.

This factoring process is often used when working in digital signal

processing (DSP).
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Factoring Polynomials in Matlab

Factoring can be also performed by MATLAB commands

p2=[1 7 12];

roots(p2)

Example 1: Find the factors of following polynomials:

• P3(x) = x3 + 2x2 + 2x + 1

• P2(x) = 9 x2 + a2

• P4(x) = x4 − 1
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Factoring Polynomials

In order to study the roots of P4(x) = x4 − 1 using MATLAB, you

can write a command creating the polynomial

p4=[1 0 0 0 -1],

follwed by commands

roots(p4),

and

zplane(p4).

which gives you a plot of the roots in the complex domain.
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Taylor Series



Taylor’s Theorem with Remainder

A Taylor series is a series expansion of a function about a point.

It is a local approximation.

A one-dimensional Taylor series is an expansion of a real function

f (x), which is (n + 1)-times differentiable, about a point x = a is

given by

f (x) = f (a)+f ′(a)(x−a)+
f ′′(a)

2!
(x−a)2+

f ′′′(a)

3!
(x−a)3+· · ·+Rn(x)

(1)

where

Rn(x) =
1

(n + 1)!

∫ x

a
f (n+1)(a)(x − a)n+1.

The last term Rn(x) is called the remainder, or error term.
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Taylor Series and Polynomials

A Taylor polynomial of order n is a partial sum of a Taylor series

no reminder!

f (x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 +

f ′′′(a)

3!
(x − a)3. (2)

If a = 0, the expansion is also known as a Maclaurin series

f (x) = f (0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3. (3)
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Taylor Series and Polynomials

Example 2: Evaluate the first five terms of Taylor series of

f (x) =
1

1− x

f (x) =
1

1− x
f (0) = 1

f ′(x) =
1

(1− x)2
f ′(0) = 1

f ′′(x) =
2

(1− x)3
f ′′(0) = 2

f ′′′(x) =
2× 3

(1− x)4
f ′′′(0) = 6

f ′′′′(x) =
6× 4

(1− x)5
f ′′′′(0) = 24
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Taylor Series and Polynomials

And as

f (x) ≈ f (0) + f ′(0)x +
f ′′(0)

2!
x2 +

f ′′′(0)

3!
x3 +

f ′′′′(0)

4!
x4

we have
1

1− x
≈ 1 + x + x2 + x3 + x4.

Do you remember the formula for geometric series ?!
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Two symbols to be defined

. . . e (Euler’s number) and
√
−1.

i ≡
√
−1

e ≡ lim
n→∞

(
1 +

1

n

)n

= 2.71828182845905 . . .

The first, i =
√
−1, is the basis for complex numbers, called

imaginary unit.

The second, e = 2.718 . . . , is a transcendental real number defined

by the above limit. It is the base of the natural logarithm.
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Taylor Polynomials

Example
Approximations of f (x) up to 3 terms

• f (x) = ex

• f (x) = sin x

• f (x) = cos x
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Taylor Polynomials

ex = 1 +
x

1!
+

x2

2!
+

x3

3!
+ · · · =

∞∑
k=0

xk

k!
(4)

sin x = x − x3

3!
+

x5

5!
− · · · =

∞∑
k=0

(−1)k
x2k+1

(2k + 1)!

cos x = 1− x2

2!
+

x4

4!
− · · · =

∞∑
k=0

(−1)k
x2k

(2k)!

If we introduce imaginary unit ıx in Eq. (4) we obtain

eıx = 1 +
ıx

1!
+

(ıx)2

2!
+

(ıx)3

3!
+

(ıx)4

4!
+ . . . (5)
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Role of imaginary exponent

For imaginary unit we have

ı1 =
√
−1

ı2 = −1

ı3 = −ı
ı4 = 1

and Equation (5) has form

eıx = 1+ı
x

1!
−x2

2!
−ıx

3

3!
+
x4

4!
+ . . . (6)
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Euler identity

It can be easily identified with

e ix = 1+i
x

1!
−x2

2!
−ıx

3

3!
+
x4

4!
+ · · · ≡ cos x + i sin x (7)

The result is the famous Euler’s formula (1743 Opera Omnia, vol.

14, p. 142 )

eıx = cos x + ı sin x
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Euler’s identity

Euler’s identity is the key to understanding the meaning of

expressions like

f (ωkT ) ≡ e iωkT = cos(ωkT ) + ı sin(ωkT ).

We will see later that such an expression defines a sampled

complex sinusoid.
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MATLAB project



MATLAB project

1. Using MATLAB plot the graphs of the sine and cosine

functions, sin(πu) and cos(πu) within the interval

−2 ≤ u ≤ 2.

2. Plot graphs of the functions sin(πu + π/2) and cos(πu + π/4)

within the interval −2 ≤ u ≤ 2.

3. Plot graphs of the functions sin(3πu) and sin(5πu) within the

interval −2 ≤ u ≤ 2.

4. Display axes, add legends to all graphs.

5. Save every output as a PNG, EPS, and Windows EMF file.
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Sample solution – Sine and cosine function

u=linspace(-2,2,4000); % 4000 points from −2 to 2

ys0=sin(pi*u);

yc0=cos(pi*u); % sine and cosine

ys=sin(pi*u+pi/2);

yc=cos(pi*u+pi/4); % ... with phase shift

figure(1); % not strictly necessary

subplot(2,1,1); % 2 rows, 1 column, 1st row

plot(u, ys0, ’LineWidth’, 2.5, ’Color’, ’r’);

hold on

plot(u, yc0, ’LineWidth’, 2.5, ’Color’, ’b’);

legend(’sin($\pi$ u)’,’cos($\pi$ u)’);

grid on

hold off
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Sample solution – Sine and cosine function

subplot(2,1,2); % 2 rows, 1 column, 2nd row

% alternative color definition as RGB triplet

plot(u, ys, ’LineWidth’, 2.5, ’Color’, [1 0 0])

hold on

plot(u, yc, ’LineWidth’, 2.5, ’Color’, [0 0 1])

legend(’sin($\pi$ u + $\pi$/4)’,’cos($\pi$ u + $\pi$/4)’)

grid on

hold off
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Homework 1

Derive the formulae for factoring the following polynomials:

P2n(x) = x2n ± 1

P2n+1(x) = x2n+1 ± 1

1. Check your results using MATLAB command roots for

finding the roots of a polynomial.

2. Plot the roots of polynomials of degree 2n = 16 and 2n = 32

using MATLAB command zplane.

3. Follow the symmetrical properties of the roots. Report on

what do you observe.

4. Deliver your results by Wednesday, October 9 2019 to the web

page http://zolotarev.fd.cvut.cz/mni.
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Homework rules

Solution report should be formally correct (structuring, grammar).

Only .pdf files are acceptable. Handwritten solutions and .doc

and .docx files will not be accepted.

Solutions written in TEX (using LyX, Overleaf, whatever) may

receive small bonification.
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