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Review vector spaces



Review vectors

Recall vectors in n-dimensional space Rn. Each such vector u can

be uniquely represented as a linear combination of n unit basis

vectors e1, . . . , en:

u = α1e1 + α2e2 + . . .+ αnen,

Q: How to compute the values of αi ∈ R?
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Inner product

Definition (Inner product)

Operation that assigns a non-negative scalar a to a pair of vectors

u and v, denoted (u, v), where:

1. (u + w, v) = (u, v) + (w, v)

2. (αu, v) = α(u, v)

3. (u, v) = (v,u)

4. (v, v) ≥ 0, (v, v) = 0⇔ v ≡ 0
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Inner product space

Definition (Inner product space)

Inner product space is a vector space with inner product operation

defined.

For inner product space we still have

u = α1e1 + α2e2 + . . .+ αnen,

and in addition αi ∈ R can be computed using the inner product

(·, ·) as

αi = (u, ei)
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Review vectors

Definition (Orthornormal vectors)

Vectors ei are orthonormal if they are

• normalized – ∀i : ei .ei = ‖ei‖2 = 1

• orthogonal – ∀i 6= j : ei .ej = (ei , ej) = 0

Example

Draw addition of two vectors in two dimensional space R2:

u = 3e1 + 4e2

v = −2e1 + 3e2

and make them normalized.
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Review vectors

Vectors are objects that can be added together and multiplied by

scalars - vector space:

• if u =
n∑

i=1

αiei and v =
n∑

i=1

βiei ⇒

u + v =
n∑

i=1

(αi + βi )ei

• if u =
n∑

i=1

αiei and λ is scalar ⇒

λu =
n∑

i=1

λαiei
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Vector space of continuous-time signals

We have already studied the space of continuous-time signals. We

can easily verify:

• we can form the sum of any two signals x1(t) and x2(t) to

obtain another signal

x(t) = x1(t) + x2(t)

• we can multiply any signal x(t) by a constant λ to obtain

another signal

y(t) = λx(t)

Unlike the n-dimensional space Rn, the vector space of all

continuous-time signals is infinite-dimensional.
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Vector space of periodic signals



Vector space of periodic signals

Consider now periodic signals; any such signal x(t) satisfies

periodicity condition:

x(t + T ) = x(t) for all t

for given period T .
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Vector space of periodic signals

It is easy to see that periodic signals form a vector space:

• if x1(t) and x2(t) are periodic, then

x(t + T ) = x1(t + T ) + x2(t + T ) = x1(t) + x2(t) = x(t)

is also periodic with the same period T

• if x1(t) is periodic and λ is scalar, then

y(t + T ) = λx(t + T ) = λx(t) = y(t)

is a scaled version of x(t) being also periodic with period T
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Vector space of periodic signals

If we impose even more conditions on periodic signals – the

Dirichlet conditions, which hold for all signals encountered in

practice, then we can represent signals as infinite linear

combinations of orthogonal and normalized vectors.

• A function satisfying Dirichlet conditions must have right and

left limits at each point of discontinuity:

x(t+) = lim
τ→t+

x(τ) and x(t−) = lim
τ→t−

x(τ)

• The Dirichlet theorem says in particular that the Fourier series

for x(t) converges and is equal to x(t) = x(t+)+x(t−)
2

wherever x(t) is continuous.
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Complete orthonormal systems

Definition (Inner product of T -periodic signals)

We can define the inner product of two T -periodic signals x1(t)

and x2(t) as

(x1(t), x2(t)) =

∫ T

0
x1(t)x2(t) dt

We can integrate over any complete period, i.e. from −T
2 to −T

2

(x1(t), x2(t)) =

∫ T
2

− T
2

x1(t)x2(t) dt.
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Complete orthonormal systems

Then we can take any sequence of T -periodic functions {φj(t)}j∈N
that are

• normalized – (φj(t), φj(t)) = ‖φj(t)‖2 =

∫ T

0
φ2j (t)dt

• orthogonal – (φj(t), φk(t)) =

∫ T

0
φj(t)φk(t)dt = 0 for j 6= k

• complete – if a signal x(t) is such that

(φj(t), x(t)) =

∫ T

0
φj(t)x(t)dt = 0

for all j , then x(t) = 0
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Trigonometric and complex

exponential Fourier Series



Fourier Series

Let {φj(t)}j∈N be a complete, orthonormal set of functions. Then

any well-behaved T -periodic signal x(t) can be uniquely

represented as an infinite series

x(t) =
∞∑
j=0

αjφj(t)

This is called the Fourier series representation of x(t). The scalars

(numbers) αj are called the Fourier coefficients of x(t) with

respect to {φj(t)}j∈N and are computed as follows:

αj = (φj(t), x(t)) =

∫ T

0
φj(t)x(t)dt.
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Fourier Series

In analogy to vectors in n-dimensional space, you can think of αj

as the projection of x(t) in the direction of φj(t).

Proof:

To derive the formula for αj , write

x(t)φk(t) =
∞∑
j=0

αjφj(t)φk(t)

and then integrate over a period

(φk(t), x(t)) =

∫ T

0
φk(t)x(t) dt =

∫ T

0

∞∑
j=0

αjφj(t)φk(t) dt.
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Fourier Series

For convergent series we can integrate term by term and∫ T

0

∞∑
j=0

αjφj(t)φk(t) dt =
∞∑
j=0

αj

∫ T

0
φj(t)φk(t)dt =

∞∑
j=0

αjδj ,k = αk

Here and in following evaluation we will use Kronecker delta which

is defined as δj ,k = 0 for j 6= k and δk,k = 1 and which indicates

that {φj(t)}∞j=0 form an orthonormal system of functions.
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Fourier Series

It can be also proved that, as the functions {φj(t)}∞j=0 form a

complete orthonormal system, the partial sums of the Fourier series

x(t) =
∞∑
j=0

αjφj(t)

converge to x(t) in the following sense (L2-convergence):

lim
N→∞

∫ T

0

x(t)−
N∑
j=0

αjφj(t)

2

dt = 0.
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Fourier Series

Similarly to the case of Taylor polynomial, we can use (with some

care for discontinuities) the partial sum

x(t) ≈
N∑
j=0

αjφj(t)

to approximate x(t).

17



Trigonometric Fourier Series

The sequence of T -periodic functions {φk(t)}∞k=0 defined for

m = 1, 2, . . . by

1. φ0(t) =
1√
T

2. φ2m−1(t) =

√
2

T
cos(mω0t)

3. φ2m(t) =

√
2

T
sin(mω0t)

is complete and orthonormal. Here ω0 =
2π

T
is called fundamental

frequency.
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Trigonometric Fourier Series

Note the first few functional elements of the sequence from the

previous slide (without scaling factors):

{1, cos t, sin t, cos 2t, sin 2t, cos 3t, sin 3t, ...}
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Trigonometric Fourier Series

Common way of writing down the trigonometric Fourier series of

x(t) is following:

x(t) = a0 +
∞∑
k=1

ak cos(kω0t) +
∞∑
k=1

bk sin(kω0t)

The Fourier coefficients can be computed as follows:

1. a0 =
1

T

∫ T

0
x(t) dt

2. ak =
2

T

∫ T

0
x(t) cos(kω0t) dt

3. bk =
2

T

∫ T

0
x(t) sin(kω0t) dt
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Trigonometric Fourier Series

To relate this to the orthonormal representation in terms of the

{φj(t)}j∈N, we note that we can write

1. a0 =
1

T

∫ T

0

x(t) dt =
1√
T

∫ T

0

x(t)
1√
T

dt

=
1√
T

∫ T

0

x(t)φ0(t) dt =
1√
T
α0

2. ak = · · ·
3. bk = · · ·

4. x(t) = a0 +
∞∑
k=1

ak cos(kω0t) +
∞∑
k=1

bk sin(kω0t) ≡
∞∑
j=0

αjφj(t).
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Trigonometric Fourier Series – Symmetry

In symmetrical cases:

1. if x(t) is an even function, i.e., x(t) = x(−t) for all t, then all

its sine Fourier coefficients are zero:

bk =
1

T

∫ T
2

−T
2

x(t) sin(kω0t) dt = 0

2. if x(t) is an odd function, i.e., x(t) = −x(−t), then all its

cosine Fourier coefficients are zero:

ak =
1

T

∫ T
2

−T
2

x(t) cos(kω0t) dt = 0
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Trigonometric Fourier Series

Theorem (Fourier series of an even function)

Fourier series of an even function f (t) = f (−t) consists of the

constant and cosine terms

f (t) = a0 +
∞∑
n=1

an cos(nω0t),

where ω0 =
2π

T
.
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Trigonometric Fourier Series

Theorem (Fourier series of an even function)

Fourier series of an odd function f (t) = −f (−t) consists of the

sine terms

f (t) =
∞∑
n=1

bn sin(nω0t),

where ω0 =
2π

T
.
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Trigonometric Fourier Series

Example 1: Consider a periodic signal x(t) = x(t + T ) given by

repeating the square wave

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1
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−0.4

−0.2

0
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0.4
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0.8

1

                             t

Note, that here T = 2 !
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Trigonometric Fourier Series

Solution:

1. the signal has odd symmetry ⇒ all ak = 0

2. bk =
2

T

∫ 1

−1
x(t) sin(kω0t) dt

=
2

T

∫ 0

−1
(−1) sin(kω0t) dt +

2

T

∫ 1

0
(+1) sin(kω0t) dt

=
1

kπ

[
cos(kπt)

]0
−1
− 1

kπ

[
cos(kπt)

]1
0

=
2

kπ
(1− cos(kπ)) =

4

kπ
sin2(

kπ

2
)

3. For k = 2m − 1 is bk =
4

kπ
sin2(

kπ

2
) =

4

(2m − 1)π

4. x(t) =
∞∑

m=1

4

(2m − 1)π
sin((2m − 1)πt)
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Partial sums

xN(t) =
N∑

m=1

4

(2m − 1)π
sin(2m − 1)πt

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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N=9

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

N=17
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Gibbs phenomenon

The Fourier series (over/under)shoots the actual value of x(t) at

points of discontinuity regardless of degree N.
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Complex exponentials

Another useful complete orthonormal set is accomplished by the

complex exponentials:

1. φk(t) =
1√
T

exp(j kω0t) for k = . . .− 2,−1, 0, 1, 2, . . .

2. these functions are complex-valued, and we have to evaluate

the inner product as

(x1(t), x2(t)) =

∫ T

0
x1(t)x∗2 (t) dt,

where x∗2 (t) denotes complex conjugation
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Complex exponential Fourier series

1. (φk(t), φ`(t)) =
1

T

∫ T

0
exp(j kω0t) exp(−j `ω0t) dt = δk,`

2. x(t) =
∞∑

k=−∞
ck exp(j kω0t)

3. ck =
1

T

∫ T

0
x(t) exp(−j kω0t)) dt

4. as in trigonometric case ω0 =
2π

T
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Project 1 – Half-wave rectified sinusoid

Find the Fourier series representation for the half-wave rectified

sinusoid.

f (t) =


sin

(
2πt

T

)
if 0 ≤ t ≤ T

2

0 if
T

2
≤ t ≤ T

• Calculate the coefficients ak and bk using identities

2 sin `x sinmx = cos(`−m)x − cos(`+ m)x ,

2 sin `x cosmx = sin(`−m)x + sin(`+ m)x .

• Plot the first 5 components of the Fourier series using Matlab.
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Project 2 – Sawtooth

Find the Fourier series representation for the sawtooth

f (t) = f (t + T ) = t

if −T/2 ≤ t ≤ T/2.

• As the function f (t) is odd, the coefficients ak = 0. Calculate

coefficients bk .

• Plot the first 5 components of the Fourier series using Matlab.
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Assignment 3 – Trigonometric Fourier Series

• Calculate the Fourier series for

f (x) = x2

if −A ≤ x ≤ A.

• Compare the results for space periodicity f (x + 2A) = f (x)

with those obtained for time periodicity f (t + T ) = f (t).

• In Matlab, use subplot() to plot five rows of the first 5

components of the Fourier series.
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