From Fourier Series to Analysis of Non-stationary Signals - III

Mathematical tools, 2019

Jan Přikryl, Miroslav Vlček
October 14, 2019

Department of Applied Mathematics, CTU FTS

Contents

Review vector spaces

Vector space of periodic signals

Complete orthonormal systems of functions

Trigonometric and complex exponential Fourier Series

Project

Homework

Contents

Review vector spaces

Vector space of periodic signals

Complete orthonormal systems of functions

Trigonometric and complex exponential Fourier Series

Project

Homework

Contents

Review vector spaces

Vector space of periodic signals

Complete orthonormal systems of functions

Trigonometric and complex exponential Fourier Series

Project

Homework

Contents

Review vector spaces

Vector space of periodic signals

Complete orthonormal systems of functions

Trigonometric and complex exponential Fourier Series

Project

Homework

Contents

Review vector spaces

Vector space of periodic signals

Complete orthonormal systems of functions

Trigonometric and complex exponential Fourier Series

Project

Homework

Contents

Review vector spaces

Vector space of periodic signals

Complete orthonormal systems of functions

Trigonometric and complex exponential Fourier Series

Project

Homework

Review vector spaces

Review vectors

Recall vectors in n-dimensional space \mathbb{R}^{n}. Each such vector \mathbf{u} can be uniquely represented as a linear combination of n unit basis vectors $\mathbf{e}_{\mathbf{1}}, \ldots, \mathbf{e}_{\mathbf{n}}$:

$$
\mathbf{u}=\alpha_{1} \mathbf{e}_{\mathbf{1}}+\alpha_{2} \mathbf{e}_{\mathbf{2}}+\ldots+\alpha_{n} \mathbf{e}_{\mathbf{n}}
$$

Q: How to compute the values of $\alpha_{i} \in \mathbb{R}$?

Inner product

Definition (Inner product)

Operation that assigns a non-negative scalar a to a pair of vectors \mathbf{u} and \mathbf{v}, denoted (\mathbf{u}, \mathbf{v}), where:

1. $(\mathbf{u}+\mathbf{w}, \mathbf{v})=(\mathbf{u}, \mathbf{v})+(\mathbf{w}, \mathbf{v})$
2. $(\alpha \mathbf{u}, \mathbf{v})=\alpha(\mathbf{u}, \mathbf{v})$
3. $(\mathbf{u}, \mathbf{v})=(\mathbf{v}, \mathbf{u})$
4. $(\mathbf{v}, \mathbf{v}) \geq 0,(\mathbf{v}, \mathbf{v})=0 \Leftrightarrow \mathbf{v} \equiv \mathbf{0}$

Inner product space

Definition (Inner product space)

Inner product space is a vector space with inner product operation defined.

For inner product space we still have

$$
\mathbf{u}=\alpha_{1} \mathbf{e}_{\mathbf{1}}+\alpha_{2} \mathbf{e}_{2}+\ldots+\alpha_{n} \mathbf{e}_{\mathbf{n}}
$$

and in addition $\alpha_{i} \in \mathbb{R}$ can be computed using the inner product (\cdot, \cdot) as

$$
\alpha_{i}=\left(\mathbf{u}, \mathbf{e}_{\mathbf{i}}\right)
$$

Definition (Orthornormal vectors)

Vectors \mathbf{e}_{i} are orthonormal if they are

- normalized $-\forall i: \mathbf{e}_{i} \cdot \mathbf{e}_{i}=\left\|\mathbf{e}_{i}\right\|^{2}=1$
- orthogonal $-\forall i \neq j: \mathbf{e}_{i} \cdot \mathbf{e}_{j}=\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right)=0$

Example

Draw addition of two vectors in two dimensional space \mathbb{R}^{2} :

$$
\begin{aligned}
& \mathbf{u}=3 \mathbf{e}_{\mathbf{1}}+4 \mathbf{e}_{\mathbf{2}} \\
& \mathbf{v}=-2 \mathbf{e}_{\mathbf{1}}+3 \mathbf{e}_{\mathbf{2}}
\end{aligned}
$$

and make them normalized.

Review vectors

Vectors are objects that can be added together and multiplied by scalars - vector space:

- if $\mathbf{u}=\sum_{i=1}^{n} \alpha_{i} \mathbf{e}_{i}$ and $\mathbf{v}=\sum_{i=1}^{n} \beta_{i} \mathbf{e}_{i} \Rightarrow$

$$
\mathbf{u}+\mathbf{v}=\sum_{i=1}^{n}\left(\alpha_{i}+\beta_{i}\right) \mathbf{e}_{i}
$$

- if $\mathbf{u}=\sum_{i=1}^{n} \alpha_{i} \mathbf{e}_{i}$ and λ is scalar \Rightarrow

$$
\lambda \mathbf{u}=\sum_{i=1}^{n} \lambda \alpha_{i} \mathbf{e}_{i}
$$

Vector space of continuous-time signals

We have already studied the space of continuous-time signals. We can easily verify:

- we can form the sum of any two signals $x_{1}(t)$ and $x_{2}(t)$ to obtain another signal

$$
x(t)=x_{1}(t)+x_{2}(t)
$$

- we can multiply any signal $x(t)$ by a constant λ to obtain another signal

$$
y(t)=\lambda x(t)
$$

Unlike the n-dimensional space \mathbb{R}^{n}, the vector space of all continuous-time signals is infinite-dimensional.

Vector space of periodic signals

Vector space of periodic signals

Consider now periodic signals; any such signal $x(t)$ satisfies periodicity condition:

$$
x(t+T)=x(t) \text { for all } t
$$

for given period T.

Vector space of periodic signals

It is easy to see that periodic signals form a vector space:

- if $x_{1}(t)$ and $x_{2}(t)$ are periodic, then

$$
x(t+T)=x_{1}(t+T)+x_{2}(t+T)=x_{1}(t)+x_{2}(t)=x(t)
$$

is also periodic with the same period T

- if $x_{1}(t)$ is periodic and λ is scalar, then

$$
y(t+T)=\lambda x(t+T)=\lambda x(t)=y(t)
$$

is a scaled version of $x(t)$ being also periodic with period T

Vector space of periodic signals

If we impose even more conditions on periodic signals - the Dirichlet conditions, which hold for all signals encountered in practice, then we can represent signals as infinite linear combinations of orthogonal and normalized vectors.

- A function satisfying Dirichlet conditions must have right and left limits at each point of discontinuity:

$$
x(t+)=\lim _{\tau \rightarrow t+} x(\tau) \text { and } x(t-)=\lim _{\tau \rightarrow t-} x(\tau)
$$

- The Dirichlet theorem says in particular that the Fourier series for $x(t)$ converges and is equal to $x(t)=\frac{x(t+)+x(t-)}{2}$ wherever $x(t)$ is continuous.

Complete orthonormal systems of functions

Complete orthonormal systems

Definition (Inner product of T-periodic signals)

We can define the inner product of two T-periodic signals $x_{1}(t)$ and $x_{2}(t)$ as

$$
\left(x_{1}(t), x_{2}(t)\right)=\int_{0}^{T} x_{1}(t) x_{2}(t) \mathrm{d} t
$$

We can integrate over any complete period, i.e. from $-\frac{T}{2}$ to $-\frac{T}{2}$

$$
\left(x_{1}(t), x_{2}(t)\right)=\int_{-\frac{T}{2}}^{\frac{T}{2}} x_{1}(t) x_{2}(t) \mathrm{d} t .
$$

Then we can take any sequence of T-periodic functions $\left\{\phi_{j}(t)\right\}_{j \in \mathbb{N}}$ that are

- normalized $-\left(\phi_{j}(t), \phi_{j}(t)\right)=\left\|\phi_{j}(t)\right\|^{2}=\int_{0}^{T} \phi_{j}^{2}(t) \mathrm{d} t$
- orthogonal - $\left(\phi_{j}(t), \phi_{k}(t)\right)=\int_{0}^{T} \phi_{j}(t) \phi_{k}(t) \mathrm{d} t=0$ for $j \neq k$
- complete - if a signal $x(t)$ is such that

$$
\left(\phi_{j}(t), x(t)\right)=\int_{0}^{T} \phi_{j}(t) x(t) \mathrm{d} t=0
$$

for all j, then $x(t)=0$

Trigonometric and complex exponential Fourier Series

Let $\left\{\phi_{j}(t)\right\}_{j \in \mathbb{N}}$ be a complete, orthonormal set of functions. Then any well-behaved T-periodic signal $x(t)$ can be uniquely represented as an infinite series

$$
x(t)=\sum_{j=0}^{\infty} \alpha_{j} \phi_{j}(t)
$$

This is called the Fourier series representation of $x(t)$. The scalars (numbers) α_{j} are called the Fourier coefficients of $x(t)$ with respect to $\left\{\phi_{j}(t)\right\}_{j \in \mathbb{N}}$ and are computed as follows:

$$
\alpha_{j}=\left(\phi_{j}(t), x(t)\right)=\int_{0}^{T} \phi_{j}(t) x(t) d t
$$

In analogy to vectors in n-dimensional space, you can think of α_{j} as the projection of $x(t)$ in the direction of $\phi_{j}(t)$.

Proof:
To derive the formula for α_{j}, write

$$
x(t) \phi_{k}(t)=\sum_{j=0}^{\infty} \alpha_{j} \phi_{j}(t) \phi_{k}(t)
$$

and then integrate over a period

$$
\left(\phi_{k}(t), x(t)\right)=\int_{0}^{T} \phi_{k}(t) x(t) \mathrm{d} t=\int_{0}^{T} \sum_{j=0}^{\infty} \alpha_{j} \phi_{j}(t) \phi_{k}(t) \mathrm{d} t
$$

For convergent series we can integrate term by term and
$\int_{0}^{T} \sum_{j=0}^{\infty} \alpha_{j} \phi_{j}(t) \phi_{k}(t) \mathrm{d} t=\sum_{j=0}^{\infty} \alpha_{j} \int_{0}^{T} \phi_{j}(t) \phi_{k}(t) \mathrm{d} t=\sum_{j=0}^{\infty} \alpha_{j} \delta_{j, k}=\alpha_{k}$
Here and in following evaluation we will use Kronecker delta which is defined as $\delta_{j, k}=0$ for $j \neq k$ and $\delta_{k, k}=1$ and which indicates that $\left\{\phi_{j}(t)\right\}_{j=0}^{\infty}$ form an orthonormal system of functions.

It can be also proved that, as the functions $\left\{\phi_{j}(t)\right\}_{j=0}^{\infty}$ form a complete orthonormal system, the partial sums of the Fourier series

$$
x(t)=\sum_{j=0}^{\infty} \alpha_{j} \phi_{j}(t)
$$

converge to $x(t)$ in the following sense (L_{2}-convergence):

$$
\lim _{N \rightarrow \infty} \int_{0}^{T}\left(x(t)-\sum_{j=0}^{N} \alpha_{j} \phi_{j}(t)\right)^{2} \mathrm{~d} t=0
$$

Similarly to the case of Taylor polynomial, we can use (with some care for discontinuities) the partial sum

$$
x(t) \approx \sum_{j=0}^{N} \alpha_{j} \phi_{j}(t)
$$

to approximate $x(t)$.

The sequence of T-periodic functions $\left\{\phi_{k}(t)\right\}_{k=0}^{\infty}$ defined for $m=1,2, \ldots$ by

1. $\phi_{0}(t)=\frac{1}{\sqrt{T}}$
2. $\phi_{2 m-1}(t)=\sqrt{\frac{2}{T}} \cos \left(m \omega_{0} t\right)$
3. $\phi_{2 m}(t)=\sqrt{\frac{2}{T}} \sin \left(m \omega_{0} t\right)$
is complete and orthonormal. Here $\omega_{0}=\frac{2 \pi}{T}$ is called fundamental frequency.

Note the first few functional elements of the sequence from the previous slide (without scaling factors):

$$
\{1, \cos t, \sin t, \cos 2 t, \sin 2 t, \cos 3 t, \sin 3 t, \ldots\}
$$

Common way of writing down the trigonometric Fourier series of $x(t)$ is following:

$$
x(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos \left(k \omega_{0} t\right)+\sum_{k=1}^{\infty} b_{k} \sin \left(k \omega_{0} t\right)
$$

The Fourier coefficients can be computed as follows:

1. $a_{0}=\frac{1}{T} \int_{0}^{T} x(t) \mathrm{d} t$
2. $a_{k}=\frac{2}{T} \int_{0}^{T} x(t) \cos \left(k \omega_{0} t\right) d t$
3. $b_{k}=\frac{2}{T} \int_{0}^{T} x(t) \sin \left(k \omega_{0} t\right) d t$

Trigonometric Fourier Series

To relate this to the orthonormal representation in terms of the $\left\{\phi_{j}(t)\right\}_{j \in \mathbb{N}}$, we note that we can write

$$
\text { 1. } \begin{aligned}
a_{0} & =\frac{1}{T} \int_{0}^{T} x(t) \mathrm{d} t=\frac{1}{\sqrt{T}} \int_{0}^{T} x(t) \frac{1}{\sqrt{T}} \mathrm{~d} t \\
& =\frac{1}{\sqrt{T}} \int_{0}^{T} x(t) \phi_{0}(t) \mathrm{d} t=\frac{1}{\sqrt{T}} \alpha_{0}
\end{aligned}
$$

2. $a_{k}=$
3. $b_{k}=$

To relate this to the orthonormal representation in terms of the $\left\{\phi_{j}(t)\right\}_{j \in \mathbb{N}}$, we note that we can write

1. $a_{0}=\frac{1}{\sqrt{T}} \alpha_{0}$
2. $a_{k}=$
3. $b_{k}=$
4. $x(t)=a_{0}$

Trigonometric Fourier Series

To relate this to the orthonormal representation in terms of the $\left\{\phi_{j}(t)\right\}_{j \in \mathbb{N}}$, we note that we can write

1. $a_{0}=\frac{1}{\sqrt{T}} \alpha_{0}$
2. $a_{k}=\frac{2}{T} \int_{0}^{T} x(t) \cos \left(k \omega_{0} t\right) \mathrm{d} t=\sqrt{\frac{2}{T}} \int_{0}^{T} x(t) \sqrt{\frac{2}{T}} \cos \left(k \omega_{0} t\right) \mathrm{d} t$
$=\sqrt{\frac{2}{T}} \int_{0}^{T} x(t) \phi_{2 k-1}(t) \mathrm{d} t=\sqrt{\frac{2}{T}} \alpha_{2 k-1}$
3. $b_{k}=$
4. $x(t)=a_{0}$

To relate this to the orthonormal representation in terms of the $\left\{\phi_{j}(t)\right\}_{j \in \mathbb{N}}$, we note that we can write

1. $a_{0}=\frac{1}{\sqrt{T}} \alpha_{0}$
2. $a_{k}=\sqrt{\frac{2}{T}} \alpha_{2 k-1}$
3. $b_{k}=$
4. $x(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos \left(k \omega_{0} t\right)+\sum_{k=1}^{\infty} b_{k} \sin \left(k \omega_{0} t\right) \equiv \sum_{j=0}^{\infty} \alpha_{j} \phi_{j}(t)$.

Trigonometric Fourier Series

To relate this to the orthonormal representation in terms of the $\left\{\phi_{j}(t)\right\}_{j \in \mathbb{N}}$, we note that we can write

1. $a_{0}=\frac{1}{\sqrt{T}} \alpha_{0}$
2. $a_{k}=\sqrt{\frac{2}{T}} \alpha_{2 k-1}$
3. $b_{k}=\frac{2}{T} \int_{0}^{T} x(t) \sqrt{\frac{2}{T}} \mathrm{~d} t=\sqrt{\frac{2}{T}} \int_{0}^{T} x(t) \sqrt{\frac{2}{T}} \sqrt{\frac{2}{T}} \mathrm{~d} t$

$$
=\sqrt{\frac{2}{T}} \int_{0}^{T} x(t) \phi_{2 k}(t) \mathrm{d} t=\sqrt{\frac{2}{T}} \alpha_{2 k}
$$

4. $x(t)=a_{0}-$

To relate this to the orthonormal representation in terms of the $\left\{\phi_{j}(t)\right\}_{j \in \mathbb{N}}$, we note that we can write

1. $a_{0}=\frac{1}{\sqrt{T}} \alpha_{0}$
2. $a_{k}=\sqrt{\frac{2}{T}} \alpha_{2 k-1}$
3. $b_{k}=\sqrt{\frac{2}{T}} \alpha_{2 k}$

Trigonometric Fourier Series

To relate this to the orthonormal representation in terms of the $\left\{\phi_{j}(t)\right\}_{j \in \mathbb{N}}$, we note that we can write

1. $a_{0}=\frac{1}{\sqrt{T}} \alpha_{0}$
2. $a_{k}=\sqrt{\frac{2}{T}} \alpha_{2 k-1}$
3. $b_{k}=\sqrt{\frac{2}{T}} \alpha_{2 k}$
4. $x(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos \left(k \omega_{0} t\right)+\sum_{k=1}^{\infty} b_{k} \sin \left(k \omega_{0} t\right) \equiv \sum_{j=0}^{\infty} \alpha_{j} \phi_{j}(t)$.

In symmetrical cases:

1. if $x(t)$ is an even function, i.e., $x(t)=x(-t)$ for all t, then all its sine Fourier coefficients are zero:

$$
b_{k}=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) \sin \left(k \omega_{0} t\right) \mathrm{d} t=0
$$

2. if $x(t)$ is an odd function, i.e., $x(t)=-x(-t)$, then all its cosine Fourier coefficients are zero:

$$
a_{k}=\frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} x(t) \cos \left(k \omega_{0} t\right) d t=0
$$

Theorem (Fourier series of an even function)
Fourier series of an even function $f(t)=f(-t)$ consists of the constant and cosine terms

$$
f(t)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \omega_{0} t\right)
$$

where $\omega_{0}=\frac{2 \pi}{T}$.

Theorem (Fourier series of an even function)
Fourier series of an odd function $f(t)=-f(-t)$ consists of the sine terms

$$
f(t)=\sum_{n=1}^{\infty} b_{n} \sin \left(n \omega_{0} t\right)
$$

where $\omega_{0}=\frac{2 \pi}{T}$.

Example 1: Consider a periodic signal $x(t)=x(t+T)$ given by repeating the square wave

Note, that here $T=2$!

Solution:

1. the signal has odd symmetry \Rightarrow all $a_{k}=0$
2. $b_{k}=\frac{2}{T} \int_{-1}^{1} x(t) \sin \left(k \omega_{0} t\right) \mathrm{d} t$

$$
\begin{aligned}
& =\frac{2}{T} \int_{-1}^{0}(-1) \sin \left(k \omega_{0} t\right) \mathrm{d} t+\frac{2}{T} \int_{0}^{1}(+1) \sin \left(k \omega_{0} t\right) \mathrm{d} t \\
& =\frac{1}{k \pi}[\cos (k \pi t)]_{-1}^{0}-\frac{1}{k \pi}[\cos (k \pi t)]_{0}^{1} \\
& =\frac{2}{k \pi}(1-\cos (k \pi))=\frac{4}{k \pi} \sin ^{2}\left(\frac{k \pi}{2}\right)
\end{aligned}
$$

3. For $k=2 m-1$ is $b_{k}=\frac{4}{k \pi} \sin ^{2}\left(\frac{k \pi}{2}\right)=\frac{4}{(2 m-1) \pi}$
4. $x(t)=\sum_{m=1}^{\infty} \frac{4}{(2 m-1) \pi} \sin ((2 m-1) \pi t)$

Partial sums

$$
x_{N}(t)=\sum_{m=1}^{N} \frac{4}{(2 m-1) \pi} \sin (2 m-1) \pi t
$$

Gibbs phenomenon

The Fourier series (over/under)shoots the actual value of $x(t)$ at points of discontinuity regardless of degree N.

Complex exponentials

Another useful complete orthonormal set is accomplished by the complex exponentials:

1. $\phi_{k}(t)=\frac{1}{\sqrt{T}} \exp \left(j k \omega_{0} t\right)$ for $k=\ldots-2,-1,0,1,2, \ldots$
2. these functions are complex-valued, and we have to evaluate the inner product as

$$
\left(x_{1}(t), x_{2}(t)\right)=\int_{0}^{T} x_{1}(t) x_{2}^{*}(t) \mathrm{d} t
$$

where $x_{2}^{*}(t)$ denotes complex conjugation

Complex exponential Fourier series

1. $\left(\phi_{k}(t), \phi_{\ell}(t)\right)=\frac{1}{T} \int_{0}^{T} \exp \left(j k \omega_{0} t\right) \exp \left(-j \ell \omega_{0} t\right) \mathrm{d} t=\delta_{k, \ell}$
2. $x(t)=\sum_{k=-\infty}^{\infty} c_{k} \exp \left(j k \omega_{0} t\right)$
3. $\left.c_{k}=\frac{1}{T} \int_{0}^{T} x(t) \exp \left(-j k \omega_{0} t\right)\right) d t$
4. as in trigonometric case $\omega_{0}=\frac{2 \pi}{T}$

Project

Find the Fourier series representation for the half-wave rectified sinusoid.

$$
f(t)= \begin{cases}\sin \left(\frac{2 \pi t}{T}\right) & \text { if } \quad 0 \leq t \leq \frac{T}{2} \\ 0 & \text { if } \quad \frac{T}{2} \leq t \leq T\end{cases}
$$

- Calculate the coefficients a_{k} and b_{k} using identities

$$
\begin{aligned}
2 \sin \ell x \sin m x & =\cos (\ell-m) x-\cos (\ell+m) x \\
2 \sin \ell x \cos m x & =\sin (\ell-m) x+\sin (\ell+m) x
\end{aligned}
$$

- Plot the first 5 components of the Fourier series using Matlab.

Project 2 - Sawtooth

Find the Fourier series representation for the sawtooth

$$
f(t)=f(t+T)=t
$$

if $-T / 2 \leq t \leq T / 2$.

- As the function $f(t)$ is odd, the coefficients $a_{k}=0$. Calculate coefficients b_{k}.
- Plot the first 5 components of the Fourier series using Matlab.

Homework

Assignment 3 - Trigonometric Fourier Series

- Calculate the Fourier series for

$$
f(x)=x^{2}
$$

if $-A \leq x \leq A$.

- Compare the results for space periodicity $f(x+2 A)=f(x)$ with those obtained for time periodicity $f(t+T)=f(t)$.
- In Matlab, use subplot() to plot five rows of the first 5 components of the Fourier series.

