# From Fourier Series to Analysis of Non-stationary Signals - IV 

Mathematical tools, 2019

Jan Přikryl, Miroslav Vlček
October 21, 2019

Department of Applied Mathematics, CTU FTS

Trigonometric formulae

Vector space of continuous basic waveforms

Vector space of discrete basic waveforms

Discrete Fourier Transform - DFT

Project

Homework

## Contents

Trigonometric formulae

Vector space of continuous basic waveforms

## Vector space of discrete basic waveforms

Discrete Fourier Transform - DFT

Project

Homework

Trigonometric formulae

Vector space of continuous basic waveforms

Vector space of discrete basic waveforms

Discrete Fourier Transform - DFT

Project

Homework

## Contents

Trigonometric formulae

Vector space of continuous basic waveforms

Vector space of discrete basic waveforms

Discrete Fourier Transform - DFT

## Project

Homework

Trigonometric formulae

Vector space of continuous basic waveforms

Vector space of discrete basic waveforms

Discrete Fourier Transform - DFT

Project

Homework

Trigonometric formulae

Vector space of continuous basic waveforms

Vector space of discrete basic waveforms

Discrete Fourier Transform - DFT

Project

Homework

## Trigonometric formulae

The derivatives and integrals (as primitive functions) of trigonometric functions are interconnected:

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x} \sin \ell x=\ell \cos \ell x \Rightarrow \int \cos \ell x \mathrm{~d} x=\frac{1}{\ell} \sin \ell x \\
& \frac{\mathrm{~d}}{\mathrm{~d} x} \cos \ell x=-\ell \sin \ell x \Rightarrow \int \sin \ell x \mathrm{~d} x=-\frac{1}{\ell} \cos \ell x
\end{aligned}
$$

Products of two trigonometric functions are expressible as

$$
\begin{aligned}
2 \sin \ell x \sin m x & =\cos (\ell-m) x-\cos (\ell+m) x \\
2 \cos \ell x \cos m x & =\cos (\ell-m) x+\cos (\ell+m) x \\
2 \sin \ell x \cos m x & =\sin (\ell-m) x+\sin (\ell+m) x
\end{aligned}
$$

Note
If $x \in(0,2 \pi)$ then for $x=\omega_{0} t$ we have $t \in(0, T)$.

We have learnt that trigonometric functions $\cos m \omega_{0} t$ and $\sin m \omega_{0} t$ form Fourier basis for $T$-periodic functions.

## Question

Is the basis $\cos m x$ and $\sin m x$ orthogonal?

## Orthogonal basis

We will study the scalar inner products of these functions for $\ell \neq m$ first:

$$
\begin{aligned}
(\cos \ell x, \cos m x) & =\int_{0}^{2 \pi} \cos \ell x \cos m x d x \\
& =\frac{1}{2} \int_{0}^{2 \pi} \cos (\ell-m) x d x+\frac{1}{2} \int_{0}^{2 \pi} \cos (\ell+m) x d x \\
& =\frac{1}{2(\ell-m)}[\sin (\ell-m) x]_{0}^{2 \pi}+\frac{1}{2(\ell+m)}[\sin (\ell+m) x]_{0}^{2 \pi} \\
& =\frac{0-0}{2(\ell-m)}+\frac{0-0}{2(\ell+m)}=0
\end{aligned}
$$

## Orthogonal basis

$$
\begin{aligned}
(\sin \ell x, \sin m x) & =\int_{0}^{2 \pi} \sin \ell x \sin m x d x \\
& =\frac{1}{2} \int_{0}^{2 \pi} \cos (\ell-m) x d x-\frac{1}{2} \int_{0}^{2 \pi} \cos (\ell+m) x d x \\
& =\frac{1}{2(\ell-m)}[\sin (\ell-m) x]_{0}^{2 \pi}-\frac{1}{2(\ell+m)}[\sin (\ell+m) x]_{0}^{2 \pi} \\
& =\frac{0-0}{2(\ell-m)}-\frac{0-0}{2(\ell+m)}=0
\end{aligned}
$$

## Orthogonal basis

$$
\begin{aligned}
(\sin \ell x, \cos m x) & =\int_{0}^{2 \pi} \sin \ell x \cos m x d x \\
& =\frac{1}{2} \int_{0}^{2 \pi} \sin (\ell-m) x \mathrm{~d} x+\frac{1}{2} \int_{0}^{2 \pi} \sin (\ell+m) x d x \\
& =-\frac{1}{2(\ell-m)}[\cos (\ell-m) x]_{0}^{2 \pi}-\frac{1}{2(\ell+m)}[\cos (\ell+m) x \\
& =-\frac{1-1}{2(\ell-m)}-\frac{1-1}{2(\ell+m)}=0
\end{aligned}
$$

$$
(\sin m x, \cos m x)=\frac{1}{2} \int_{0}^{2 \pi} \sin 2 m x d x
$$

$$
=-\frac{1}{4 m}[\cos 2 m x]_{0}^{2 \pi}=0 \quad \text { for } \ell=m
$$

## Normalization

We will study the case $\ell=m$ separately

$$
\begin{aligned}
(\cos m x, \cos m x)= & \int_{0}^{2 \pi} \cos ^{2} m x \mathrm{~d} x=\int_{0}^{2 \pi} \frac{1+\cos 2 m x}{2} \mathrm{~d} x \\
= & \frac{1}{2}[x]_{0}^{2 \pi}+\frac{1}{2 m}[\sin 2 m x]_{0}^{2 \pi} \\
\|\cos m x\|^{2}=\pi & \quad\left\|\cos m \omega_{0} t\right\|^{2}=\frac{T}{2} \\
(\sin m x, \sin m x)= & \int_{0}^{2 \pi} \sin ^{2} m x \mathrm{~d} x=\int_{0}^{2 \pi} \frac{1-\cos 2 m x}{2} \mathrm{~d} x \\
= & \frac{1}{2}[x]_{0}^{2 \pi}-\frac{1}{2 m}[\sin 2 m x]_{0}^{2 \pi} \\
\|\sin m x\|^{2}=\pi & \left\|\sin m \omega_{0} t\right\|^{2}=\frac{T}{2}
\end{aligned}
$$

Vector space of continuous basic waveforms

1. $T$-periodic signal $x(t)$ representation:

$$
x(t)=a_{0}+\sum_{k=1}^{\infty} a_{k} \cos \left(k \omega_{0} t\right)+\sum_{k=1}^{\infty} b_{k} \sin \left(k \omega_{0} t\right)
$$

2. basis vectors $\cos \left(k \omega_{0} t\right), \sin \left(k \omega_{0} t\right)$
3. $a_{0}=\frac{1}{T} \int_{0}^{T} x(t) \mathrm{d} t$,

$$
a_{k}=\frac{\left(x(t), \cos \left(k \omega_{0} t\right)\right)}{\left(\cos \left(k \omega_{0} t\right), \cos \left(k \omega_{0} t\right)\right)} \equiv \frac{2}{T} \int_{0}^{T} x(t) \cos \left(k \omega_{0} t\right) \mathrm{d} t
$$

4. $b_{k}=\frac{\left(x(t), \sin \left(k \omega_{0} t\right)\right)}{\left(\sin \left(k \omega_{0} t\right), \sin \left(k \omega_{0} t\right)\right)} \equiv \frac{2}{T} \int_{0}^{T} x(t) \sin \left(k \omega_{0} t\right) \mathrm{d} t$

## Continuous signal and basis vectors

1. $T$-periodic signal representation $x(t)=\sum_{k=-\infty}^{\infty} c_{k} \exp \left(j k \omega_{0} t\right)$
2. basis vector $\phi_{k}(t)=\exp \left(j k \omega_{0} t\right)$
3. scalar product

$$
\left.c_{k}=\frac{\left(x(t), \phi_{k}(t)\right)}{\left(\phi_{k}(t), \phi_{k}(t)\right)} \equiv \frac{1}{T} \int_{0}^{T} x(t) \exp \left(-j k \omega_{0} t\right)\right) d t
$$

4. completness of basis vectors

$$
\left(\phi_{k}(t), \phi_{\ell}(t)\right)=\frac{1}{T} \int_{0}^{T} \exp \left(j k \omega_{0} t\right) \exp \left(-j \ell \omega_{0} t\right) d t=\delta_{k, \ell}
$$

## Continuous signal and basis vectors

1. Fourier series $x(t)=\sum_{k=-\infty}^{\infty} c_{k} \exp \left(j k \omega_{0} t\right)$
2. Partial sum of Fourier Series $x_{N}(t)=\sum_{k=-M}^{M} c_{k} \exp \left(j k \omega_{0} t\right)$ for $N=2 M+1$

## Dirichlet kernel

## Definition (Dirichlet kernel)

Dirichlet kernels are the partial sums of exponential functions

$$
D_{M}\left(\omega_{0} t\right)=\sum_{k=-M}^{M} \exp \left(j k \omega_{0} t\right)=1+2 \sum_{k=1}^{M} \cos \left(k \omega_{0} t\right)
$$

Show that $D_{M}\left(\omega_{0} t\right)=\frac{\sin \left((M+1 / 2) \omega_{0} t\right)}{\sin \left(\omega_{0} t / 2\right)}$.

## Dirichlet kernel

## Theorem (Convolution of Dirichlet kernel)

The convolution of $D_{M}(t)$ with an arbitrary $T$-periodic function $f(t)=f(t+T)$ is the $M$-th degree Fourier series approximation to $f(t)$.
$D_{M}(t) * f(t) \equiv \frac{1}{T} \int_{-T / 2}^{T / 2} D_{M}(t-\tau) f(\tau) d \tau=\sum_{k=-M}^{M} c_{k} \exp \left(j k \omega_{0} t\right)$,
where $c_{k}=\frac{1}{T} \int_{-T / 2}^{T / 2} f(t) \exp \left(-j k \omega_{0} t\right) d t$.

Vector space of discrete basic waveforms

## Discrete signal and basis vectors

Consider a continuous signal $x(t)$ defined as $T$-periodical signal, sampled at the $N$ times $t=n T / N$ for $n=0,1,2, \ldots, N-1$. This yields discretised signal

$$
\mathbf{x}=\left(x_{0}, x_{1}, x_{2} \ldots, x_{N-1}\right)
$$

where $\mathbf{x}$ is a vector in $\mathbb{R}^{N}$ with $N$ components $x_{n}=x(n T / N)$. The sampled signal $\mathbf{x}=\left(x_{0}, x_{1}, x_{2} \ldots, x_{N-1}\right)$ can be extended periodically with period $N$ by modular definition

$$
x_{m}=x_{m \bmod N} N
$$

for all $m$ outside the range $0 \leq m \leq N-1$.

## Discrete signal and basis vectors

In order to form the discrete basis vectors we substitute in

$$
\phi_{k}(t)=\exp \left(j k \omega_{0} t\right)=\exp \left(j \frac{2 \pi k t}{T}\right)
$$

the discrete time $t=n T / N$ yielding $N$ components of the basis vector

$$
\phi_{k, n} \equiv \phi_{k}\left(\frac{n T}{N}\right)=\exp \left(j \frac{2 \pi k n}{N}\right) .
$$

## Discrete signal and basis vectors

Basis vector has complex components

$$
\phi_{k}=\left[\begin{array}{c}
\exp \left(j \frac{2 \pi k 0}{N}\right) \\
\exp \left(j \frac{2 \pi k 1}{N}\right) \\
\exp \left(j \frac{2 \pi k 2}{N}\right) \\
\vdots \\
\exp \left(j \frac{2 \pi k(N-1)}{N}\right)
\end{array}\right]
$$

## Discrete signal and basis vectors

On $\mathbb{C}^{n}$ the usual scalar (inner) product is

$$
(\mathbf{x}, \mathbf{y})=x_{1} \bar{y}_{1}+x_{2} \bar{y}_{2}+\ldots+x_{n} \bar{y}_{n}
$$

The corresponding norm is

$$
\|\mathbf{x}\|^{2}=(\mathbf{x}, \mathbf{x})=x_{1} \bar{x}_{1}+x_{2} \bar{x}_{2}+\ldots+x_{n} \bar{x}_{n}=\left|x_{1}\right|^{2}+\left|x_{1}\right|^{2}+\ldots+\left|x_{n}\right|^{2}
$$

which translates for our basis vector to

$$
\begin{aligned}
\left\|\phi_{k}\right\|^{2} & =\phi_{k, 0} \overline{\phi_{k, 0}}+\phi_{k, 1} \overline{\phi_{k, 1}}+\ldots+\phi_{k, N-1} \overline{\phi_{k, N-1}} \\
& =1+1+\ldots+1=N
\end{aligned}
$$

as $\overline{\phi_{k, n}}=\exp \left(-j \frac{2 \pi k n}{N}\right)$ is a complex conjugate to $\phi_{k, n}=\exp \left(j \frac{2 \pi k n}{N}\right)$.

## Discrete signal and basis vectors

We can prove that basis vectors are orthogonal using scalar product $\left(\phi_{k}, \phi_{\ell}\right)$ is zero for $k \neq \ell$. Actually

$$
\begin{aligned}
\left(\phi_{k}, \phi_{\ell}\right) & =\sum_{\nu=0}^{N-1} \phi_{k, \nu} \overline{\phi_{\ell, \nu}}=\sum_{\nu=0}^{N-1} \exp \left(j \frac{2 \pi(k-\ell) \nu}{N}\right)= \\
& =\sum_{\nu=0}^{N-1}\left(\exp \left(j \frac{2 \pi(k-\ell)}{N}\right)\right)^{\nu}
\end{aligned}
$$

We have arrived to geometric series. Its partial sum for $k \neq \ell$ is

$$
\left(\phi_{k}, \phi_{\ell}\right)=\frac{1-\left(\exp \left(j \frac{2 \pi(k-\ell)}{N}\right)\right)^{N}}{1-\exp \left(j \frac{2 \pi(k-\ell)}{N}\right)}=\frac{1-\exp (j 2 \pi(k-\ell))}{1-\exp \left(j \frac{2 \pi(k-\ell)}{N}\right)}=0
$$

## Discrete Fourier Transform - DFT

## Definition of the DFT

1. Let $\mathbf{x} \in C^{N}$ be a vector $\left(x_{0}, x_{1}, x_{2}, \ldots, x_{N-1}\right)$. The discrete Fourier transform (DFT) of $\mathbf{x}$ is the vector $\mathbf{X} \in \mathbb{C}^{N}$ with components

$$
X_{k}=\left(\mathbf{x}, \Phi_{k}\right)=\sum_{m=0}^{N-1} x_{m} \exp \left(-j \frac{2 \pi k m}{N}\right)
$$

2. Let $\mathbf{X} \in C^{N}$ be a vector $\left(X_{0}, X_{1}, X_{2}, \ldots, X_{N-1}\right)$. The inverse discrete Fourier transform (IDFT) of $\mathbf{X}$ is the vector $\mathbf{x} \in \mathbb{C}^{N}$ with components

$$
x_{k}=\frac{\left(\mathbf{X}, \Phi_{-k}\right)}{\left(\Phi_{k}, \Phi_{k}\right)}=\frac{1}{N} \sum_{m=0}^{N-1} X_{m} \exp \left(j \frac{2 \pi k m}{N}\right) .
$$

## Definition of the DFT

The coefficient $X_{0} / N$ measures the contribution of the basic waveform $(1,1,1, \ldots, 1)$ to $\mathbf{x}$. In fact

$$
\frac{X_{0}}{N}=\frac{1}{N} \sum_{m=0}^{N-1} x_{m}
$$

is the average value of $\mathbf{x}$. This coefficient is usually called as the dc coefficient, because it measures the strength of the direct current component of a signal.

## Project

## Application of the DFT

## Example

Consider the analog signal

$$
x(t)=2.0 \cos (2 \pi 5 t)+0.8 \sin (2 \pi 12 t)+0.3 \cos (2 \pi 47 t)
$$

on the interval $t \in(0,1)$. Sample this signal with period $\tau=1 / 128 \mathrm{~s}$ and obtain sample vector $\mathbf{x}=\left(x_{0}, x_{1}, x_{2}, \ldots, x_{127}\right)$.

1. Make MATLAB m-file which plots signals $x(t)$ and $\mathbf{x}$
2. Using definition of the DFT find $\mathbf{X}$.
3. Use MATLAB command $\mathrm{fft}(\mathrm{x})$ to compute DFT of $\mathbf{X}$.
4. Make MATLAB m-file which computes DFT of $\mathbf{x}$ and plots signal and its spectrum.
5. Compute IDFT of the $\mathbf{X}$ and compare it with the original signal $x(t)$.

## Example 1: Signal plots




## Solution of example 1

```
clear
    % plots original and sampled signal
t = linspace(0,1,1001);
x = 2.0*cos(2*pi*5*t) + 0.8*sin(2*pi*12*t) + ...
    0.3*\operatorname{cos(2*pi*47*t);}
N = 128; % number of samples
tdelta = 1/N; % sampling period
ts(1) = 0;
xs(1) = x(1);
for k = 2:1:N
    ts(k) = (k-1)*tdelta;
    xs(k) = 2.0*cos(2*pi*5*(k-1)*tdelta) + ...
    0.8*sin(2*pi*12*(k-1)*tdelta) + ...
    0.3*\operatorname{cos}(2*pi*47*(k-1)*tdelta);
```


## Solution of example 1

figure(1);
subplot (2, 1, 1);
plot(t,x,'LineWidth',2.5,'Color', [1 0 0 1 );
grid on;
subplot (2, 1, 2) ;
plot(ts, xs,'o','LineWidth',2.0,'Color', [0 001$]$ );
hold on;
plot(t,x,'--', 'Color', [1 0 0 $\quad$ );
grid on;
legend('Discrete $\operatorname{sigignal}_{\sqcup} x(n)$ ', 'Continuous $\operatorname{sisignal}_{\sqcup x}(t)$ ');
hold off;
pause

Homework

## Analysis of audio signal

- Start MATLAB. Load in the "ding" audio signal with command y=wavread('ding.wav') ; The audio signal is stereo one and can be decoupled into two channels by y1=y (:,1); y2=y (:,2);. The sampling rate is 22050 Herz, and the signal contains 20191 samples. If we consider this signal as sampled on an interval $(0, T)$, then $T=20191 / 22050 \approx 0.9157$ seconds.
- Compute the DFT of the signal with Y1=fft (y1) ; and Y2=fft(y2) ;. Display the magnitude of the Fourier transform with plot(abs(Y1)) or plot(abs(Y2)). The DFT is of length 20191 and symmetric about center.


## MATLAB project with audio signal

- Since MATLAB indexes from 1 , the DFT coefficient $Y_{k}$ is actually $\mathrm{Y}(\mathrm{k}+1)$ in MATLAB! Also $Y_{k}$ corresponds to frequency $k / T=k / 0.9157$ and so $Y(k+1)$ corresponds to $f_{k}=(k-1) / T=(k-1) / 0.9157$.
- You can plot only the first half of the DFT with plot(abs(Y1(1:6441))) or plot(abs(Y2(1:6441))). Use the data cursor button on plot window to pick out the frequency and amplitude of the two (obviously) largest components in the spectrum. Compute the actual value of each significant frequency in Herz.


## MATLAB project with audio signal

- Let $f_{1}, f_{2}$ denote these frequencies in Herz, and let $A_{1}, A_{2}$ denote the corresponding amplitudes from the plot. Define these variables in MATLAB.
- Generate a new signal using only these frequencies, sampled at 22 050 Herz on the interval $(0,1)$ with
$\mathrm{t}=[0: 1 / 22050: 1] ;$
$\mathrm{y} 12=(\mathrm{A} 1 * \sin (2 * \mathrm{pi} * \mathrm{f} 1 * \mathrm{t})+\mathrm{A} 2 * \sin (2 * \mathrm{pi} * \mathrm{f} 2 * \mathrm{t})) /(\mathrm{A} 1+\mathrm{A} 2)$
- Play the original sound with sound (y1) and the synthesized version sound (y12). Repeat the experiment with sound of the second channel sound (y2). Note that our synthesis does not take into account the phase information at these frequencies.
- Does the artificial generated signal reproduce ding.wav correctly? Compare the quality!

