
From Fourier Series to Analysis of

Non-stationary Signals – V

Miroslav Vlček, Jan Přikryl

November 4, 2019

Department of Applied Mathematics, CTU FTS



Contents

Properties of Fourier Transform

Aliasing

Zero Padding in discrete Fourier Transform

Project

1



Properties of Fourier Transform



Fourier Transform

The Fourier Transform can be defined for signals that are

• Discrete or continuous in time

• Finite or infinite duration

• Provided we denote the variable in time domain as x(t), or

x(n), the transformed variables in frequency domain are

correspondingly X (jω) or X (k).

This unification results in four cases.

2



An overview of Fourier transforms

continuous in time discrete in time

periodic in frequency

in
fr
eq

u
en

cy

x(t) =
1

2π

∞∫
−∞

X (jω)ejωtdω x(n) =
T

2π

+π/T∫
−π/T

X (ejωT )ejkωT dω

co
n
ti
n
u
o
u
s

X (jω) =

∞∫
−∞

e−jωtx(t)dt X (ejωT ) =
∞∑

n=−∞
x(n)e−jkωT

Fourier transform Fourier transform t = nT (DTFT)

in
fr
eq

u
en

cy

in
ti
m
e

x(t) =
∞∑

k=−∞
X (k)ejkω0t x(n) =

1

N

N−1∑
k=0

X (k)e(j2π/N)kn

d
is
cr
et
e

p
er
io
d
ic

X (k) =
ω0

2π

π/ω0∫
−π/ω0

x(t)e−jnω0tdt X (k) =
N−1∑
n=0

x(n)e−(j2π/N)kn

Fourier series Discrete Fourier transform (DFT)

3



An overview of discrete Fourier Transform

The DFT consists of inner products of the input sequence x [n]

with sampled complex sinusoidal sections

wkn
N = e j2πnk/N

yielding

X (k) = 〈x ,wk〉 =
N−1∑
n=0

x [n]e−j2πnk/N , k = 0, 1, 2, . . . ,N − 1.

4



An overview of discrete Fourier Transform

By collecting the DFT output samples into a column vector, we

have
X [0]

X [1]

X [2]
...

X [N − 1]


︸ ︷︷ ︸

X

=



1 1 1 · · · 1

1 w1
N w2

N · · · wN−1
N

1 w2
N w4

N · · · w
2(N−1)
N

...
...

...
. . .

...

1 wN−1
N w

2(N−1)
N · · · w

(N−1)(N−1)
N


︸ ︷︷ ︸

W∗
N


x [0]

x [1]

x [2]
...

x [N − 1]


︸ ︷︷ ︸

x

Finally we can write matrix representation as

X = W∗
Nx. (1)

5



An overview of discrete Fourier Transform

The matrix W∗
N = WT

N denotes the Hermitian transpose of the

complex matrix WN . It can be shown that

W∗
N ×WN =


N 0 0 · · · 0

0 N 0 · · · 0

0 0 N · · · 0
...

...
...

...
...

0 0 0 · · · N

 = N · 1

and consequently the inversion of the Eq. (1) is

x =
1

N
WNX. (2)

6



Some practical comments

If the number of digital samples in each time slice is a power of 2,

one can use a faster version of the DFT known as the fast Fourier

transform (FFT)

The FFT assumes that the samples being analyzed comprise one

cycle of a periodic wave. In most cases it is not the case and

analysis will contain many spurious frequencies not actually present

in the signal.

Sample fast enough and long enough!

To recognize details in frequency domain use spectral interpolation.

7



Aliasing



What is aliasing?

It is easiest to describe in terms of a visual sampling:

We all know and love movies. If you have ever watched a western

and seen the wheel of a rolling wagon appear to be going

backwards, you have witnessed aliasing. The movie’s frame rate is

not adequate to describe the rotational frequency of the wheel,

and our eyes are deceived by the misinformation.

The Nyquist Theorem tells us that we can successfully sample and

play back frequency components up to one-half the sampling

frequency.

Aliasing is the term used to describe what happens when we try to

record and play back frequencies higher than one-half the sampling

rate.

8



What is aliasing?

Consider a digital audio system with a sample rate of 48 KHz,

recording a steadily rising sine wave tone. At lower frequency, the

tone is sampled with many points per cycle. As the tone rises in

frequency, the cycles get shorter and fewer and fewer points are

available to describe it. At a frequency of 24 KHz, only two sample

points are available per cycle, and we are at the limit of what

Nyquist says we can do.

Still, those two frequency points are adequate, in a theoretical

world, to recreate the tone after conversion back to analog and

low-pass filtering.

9



What is aliasing?

But, if the tone continues to rise, the number of samples per cycle

is not adequate to describe the waveform, and the inadequate

description is equivalent to one describing a lower frequency tone –

this is aliasing.

In fact, the tone seems to reflect around the 24 KHz point:

• A 25 KHz tone becomes indistinguishable from a 23 KHz tone.

• A 30 KHz tone becomes an 18 KHz tone.

10



Aliasing due to a slow sampling

The following figure illustrates what happens if a signal is sampled

at regular time intervals that are slightly less often than once per

period of the original signal.

11



Zero Padding in discrete Fourier

Transform



Zero padding

Zero padding consists of appending zeros to a signal. It maps a

length N signal to a length M > N signal. M does not need to be

an integer multiple of N.

Zero padding in the time domain gives spectral interpolation in the

frequency domain.

Similarly, zero padding in the frequency domain gives bandlimited

interpolation in the time domain. This is how ideal sampling rate

conversion is accomplished.

Usually we use FFT which requires signals of length M = 2m which

means we chose the number of zeros equal to 2m − N.

12



Zero padding: How does it work?

0 5 10 15 20 25 30 35
0

0.5

1
Hanning window of 32 samples

0 2 4 6 8 10 12 14 16
0

10

20
Fourier transform of Hanning window, the first 16 samples

0 50 100 150 200 250 300
0

0.5

1
Original Hanning window of 32 samples padded by 224 zeros

0 20 40 60 80 100 120
0

10

20
Fourier transform of Hanning window, the first 128 samples

13



Project



Project 1: Zero padding

Using reasonable resolution in frequency domain with zero padding

in the time domain, determine the frequency of the periodic signal

defined as

xs = sin(32.044245t) + sin(37.070793t).

The discrete signal has only 32 samples xn produced by sampling

frequency f0 = 1/32.

14



Solution to project 1: Zero padding (1/2)

clear

t = linspace(0,1,1001);

xs = sin(32.044245*t)+sin(37.070793*t);

N = 32;

f0 = 1/N;

k = 0:1:N-1;

x1 = sin(32.044245*f0*k) + sin(37.070793*f0*k);

figure(1)

subplot(3,1,1)

plot(t,xs,’LineWidth’,1.5,’Color’,[1 0 0]);

15



Solution to project 1: Zero padding (2/2)

% Second row, make the lenghth 64 samples

subplot(3,1,2)

xfa_64 = abs(fft([x1 zeros(1,32)]));

plot(xfa_64); hold on;

stem(xfa_64); hold off;

% Third row, make the length 512 samples

xfa_512 = abs(fft([x1 zeros(1,32)]));

plot(xfa_512); hold on;

stem(xfa_512); hold off;

16



Project 2: Train

a) Start MATLAB. Load in the ”train” signal with command

load(’train’). Note that the audio signal is loaded into a

variable y and the sampling rate into Fs.

0 2000 4000 6000 8000 10000 12000 14000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

number of samples

am
pl

itu
de

17



Project 2: Train, steps 2–6

b) The sampling rate is 8192 Herz, and the signal contains 12 880

samples. If we consider this signal as sampled on an interval

(0,T ), then T = 12880/8192 ≈ 1.5723 seconds.

c) Compute the DFT of the signal with Y=fft(y). Display the

magnitude of the Fourier transform with plot(abs(Y)) The

DFT is of length 12 880 and symmetric about center.

d) Since MATLAB indexes from 1, the DFT coefficient Yk is

actually Y(k+1) in MATLAB !

e) You can plot only the first half of the DFT with

plot(abs(Y(1:6441)).

f) Compute the actual value of each significant frequency in Herz.

Use the data cursor on the plot window to pick out the frequency

and amplitude of three largest components.

18



Project 2: Train, steps 7–10

g) Denote these frequencies f1, f2, f3, and let A1,A2,A3 denote the

corresponding amplitudes. Define these variables in MATLAB.

h) Synthetize a new signal using only these frequencies, sampled at

8192 Herz on the interval (0, 1.5) with

t=[0:1/8192:1.5];

ys=(A1*sin(2*pi*f1*t)+ ...

A2*sin(2*pi*f2*t)+A3*sin(2*pi*f3*t))/(A1+A2+A3);

i) Play the original train sound with sound(y) and the synthesized

version sound(ys). Compare the quality!

j) Can you explore another frequency components? If it is so, follow

the steps g) - i) and hear the result.

19



Project 2: Train, compression

We can study a simple approach to compressing an audio signal:

The idea is to transform the audio signal in the frequency domain

with DFT and then to eliminate the insignificant frequencies by

thresholding, i.e. by zeroing out any Fourier coefficients below a

given threshold. This becomes a compressed version of the signal.

To recover an approximation to the signal, we use inverse DFT to

take the limited spectrum back to the time domain.

20



Project 2: Train, steps 11–14

k) Thresholding: Compute the maximum value of Yk with

m=max(abs(Y)). Choose a thresholding parameter ∈ (0, 1), for

example, thresh=0.1

l) Zero out all frequencies in Y that fall below a value thresh*m.

This can be done with logical indexing or e.g. with

Ythresh=(abs(Y)>m*thresh).*Y;

Plot the thresholded transform with plot(abs(Ythresh)).

m) Compute the compression ratio as the fraction of DFT coefficients

which survived the cut, sum(abs(Ythresh)>0)/12880.

n) Recover the original time domain with inverse transform

yt=real(ifft(Ytresh)) and play the compressed audio with

sound(yt). The real command truncates imaginary round-off

error in the ifft procedure.

21



Project 2: Train, steps 15-16

o) Compute the distortion (as a percentage) of the compressed

signal using formula

ε =
‖y − yt‖2

‖y‖2

Note: The norm(y) command in MATLAB computes ‖y‖, the

standard Euclidean norm of the vector y.

p) Repeat the computation for threshold values thresh=0.5,

thresh=0.05 and thresh=0.005. In each case compute the

compression ratio, the distortion, and play the audio signal and

rate its quality.

22


	Properties of Fourier Transform
	Aliasing
	Zero Padding in discrete Fourier Transform
	Project

