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Revision of sampled signals



Sampling and Aliasing

Definition (Nyquist-Shannon Sampling Theorem, 1927)

It is possible precisely to reconstruct a continuous-time signal from

its samples, given that

1. the signal is bandlimited;

2. the sampling frequency is greater than twice the signal

bandwidth.
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Aliasing in Audio

• The initial sound is a numerically synthesized piano-tone at

440Hz. The sampling frequency is of 44.1kHz (CD-quality).

• The harmonic frequencies at multiple of the fundamental tone

(440Hz) are clearly visible.
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Aliasing in Audio

• The sound will be resampled at 2 kHz, without precautions

against aliasing. The tone sounds rather strange.

• The aliasing is visible on the graphs as a “warping” of the

frequencies against a “mirror” at the Nyquist frequency 1 kHz.
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Aliasing in Audio

• In order to avoid aliasing, the spectrum of the signal should

be zero at frequencies higher than the Nyquist frequency

before resampling. A low-pass filter is used to achieve this
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Aliasing and DFT

...for a digital signal processing with DFT there are limits:

• The signal must be band-limited. This means there is a

frequency above which the signal is zero.

• Hence the maximum useable frequency in the DFT is fs/2 -

the Nyquist 1 frequency!

1Harry Nyquist 1889-1976
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Windowing and Localization



Nonlocality of DFT

Example (Frequency hop)

Consider two different periodic signals f (t) and g(t) defined on

0 ≤ t < 1 with frequencies f1 = 96 Hz and f2 = 235 Hz as follows:

• f (t) = 0.5 sin(2πf1t) + 0.5 sin(2πf2t)

• g(t) =

sin(2πf1t) for 0 ≤ t < 0.5,

sin(2πf2t) for 0.5 ≤ t < 1.0.

Use the sampling frequency fs = 1000 Hz to produce sample

vectors f and g. Compute the DFT of each sampled signal.
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Nonlocality of DFT

Two different signals f (t) and g(t) are constructed with Matlab

commands

Fs = 1000; % sampling frequency

f1 = 96;

f2 = 235;

t1 = (0:499)/Fs; % time samples for ‘g1‘

t2 = (500:999)/Fs; % time samples for ‘g2‘

t = [t1 t2]; % time samples for ‘f‘

f = 0.5*sin(2*pi*f1*t)+0.5*sin(2*pi*f2*t);

g1 = [sin(2*pi*f1*t1) zeros(1,500)];

g2 = [zeros(1,500) sin(2*pi*f2*t2)];

g = g1+g2;
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Magnitude of DFT for f (t) and g(t)
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Nonlocality of DFT

• It is obvious that each signal contains dominant frequencies

close to 96 Hz and 235 Hz and the magnitudes are fairly

similar.

• But: The signals f (t) and g(t) are quite different in the time

domain!

• The example illustrates one of the shortcomings of traditional

Fourier transform: nonlocality or global nature of the basis

vectors WN or its constituting analog waveforms e j2πkt/T .
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Detail of signal g(t)
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Nonlocality of DFT

• Discontinuities are particularly troublesome.

• The signal g(t) consists of two sinusoids only, but the

excitation of several Gks in frequency domain around the

dominant frequencies gives the impression that the entire signal

is more oscillatory.

• We would like to have possibility to localize the frequency

analysis to smaller portions for the signal.

• These requirements led to development of windowed Fourier

transform or short time Fourier transform – STFT.
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Windowing

Consider a sampled signal x ∈ CN , indexed from 0 to N − 1. We

wish to analyse the frequencies present in x, but only within a

certain time range. We choose integers m ≥ 0 and M such that

m + M ≤ N and define a vector w ∈ CN as

w [k] =

1 for m ≤ k ≤ m + M − 1

0 otherwise

We use w to define a new vector y with components

y [k] = w [k]x [k] for 0 ≤ k ≤ N − 1.

We use notation y = wx and refer to the vector w as the

(rectangular) window.
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Windowing

Proposition

Let x and w be vectors in CN with discrete Fourier transforms X

and W, respectively. Let y = wx have DFT Y. Then

Y =
1

N
X ∗W,

where ∗ is circular convolution in CN .

Definition (Circular convolution)

The n-th element of an N-point circular convolution of N-periodic

vectors X and W is

Y [n] =
1

N

N−1∑
m=0

X [m]W [(n −m) modN].
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Windowing

When processing a non-stationary signal we assume that the signal

is short-time stationary and we perform a Fourier transform on

these small blocks — we multiple the signal by a window function

that is zero outside the defined “short-time” range.

Definition (Rectangular window)

The rectangular window is defined as:

w(n) =

1 for 0 ≤ n < N

0 otherwise

The Matlab command rectwin(N) produces the N-point

rectangular window.
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Windowing

Definition (Hamming window)

The most common windowing function in speech analysis is the

Hamming window:

w(n) =

0.54 + 0.46 cos
(

2πn
N−1

)
for 0 ≤ n < N

0 otherwise

Matlab command hamming(N) produces the N-point Hamming

window.
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Windowing

Definition (Blackman window)

Another common type of window is the Blackman window:

w(n) =


0.42 + 0.5 cos

(
2πn

N − 1

)
+0.08 cos

(
4πn

N − 1

) for 0 ≤ n < N

0 otherwise

Use blackman(N) to produce the N-point Blackman window.
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Windowing result

0 100 200 300
−1

−0.5

0

0.5

1
rectangular windowed sine wave

discrete time
0 100 200 300

−1

−0.5

0

0.5

1
Hamming windowed sine wave

discrete time

0 100 200 300
0

10

20

30

40

50

60

70
FFT of rectangular windowed sine wave

frequency
0 100 200 300

0

5

10

15

20

25

30

35
FFT of Hamming windowed sine wave

frequency

18



Matlab project



Project – Windowing

Consider signal f (t) = sin(2πf1t) + 0.4 sin(2πf2t) defined on

0 ≤ t ≤ 1 with frequencies f1 = 137 Hz and f2 = 147 Hz:

a) Use Matlab to sample f (t) at N = 1000 points tk = {k/fs}Nk=0

with sampling frequency fs = 1000 Hz

N = 1000; % number of samples

Fs = 1000; % sampling frequency

f1 = 137; % 1. frequency

f2 = 147; % 2. frequency

tk = (0:(N-1))/Fs; % sampling times

f = sin(2*pi*f1*tk) + ...

0.4*sin(2*pi*f2*tk); % sampled signal
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Project – Windowing

b) Compute the DFT of the signal with F=fft(f) resp.

F=fft(f,N).

Consult the Matlab documentation and explain the difference!

c) Display the magnitude of the Fourier transform with

plot(abs(F(0:501))

d) Construct a rectangular windowed version of f (n) for window

length 200 with

fwa = f;

fwa(201:1000) = 0.0;

e) Compute the DFT of fwa and display the magnitude of the first

501 components.

f) Can you distinguish the two constituent frequencies?

Be careful: is it really obvious that the second frequency is not

a side lobe leakage? 20



MATLAB project Windowing

g) Construct a windowed version of f (n) of length 200 with

fwb = f(1:200);

h) Compute the DFT and display the magnitude of the first 101

components.

i) Can you distinguish the two constituent frequencies? Compare

the plot of fwb with the DFT of fwa.

j) Repeat the parts d–h using other window lengths such as 300,

100 or 50. How short can the time window be and still allow

resolution of the two constituent frequencies?

k) Does it matter whether we treat the windowed signal as a

vector of length 1000 as in part 4 or shorter vector as in part 7?

Does the side lobe energy confuse the results?
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Homework



Homework

1. Repeat the parts a)–k) from the lecture projkect, but this time

using a triangular window.

2. A triangular window vector w of length L = 201 can be

constructed using

L = 201;

w = triang(L);

3. Construct a windowed signal of the length 1000 as

fwc = zeros(size(f));

fwc(1:L)=f(1:L).*w;

and compute its spectrum using fft(fwc).
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MATLAB project Windowing-Questions

4. Try varying the window length L. What is the shortest window

that allows you to distinguish the two frequencies?

5. Repeat the previous parts 1–10 for the Hamming window.

6. Submit the answers for the several questions raised in parts

1–16 as a written Report on Window Functions by November

20, 2019.
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