From Fourier Series to Analysis of Non-stationary Signals – VII

Miroslav Vlček, Jan Přikryl

November 18, 2019

Department of Applied Mathematics, CTU FTS

Short Time Fourier Transform

Spectrograms

Matlab project

Short Time Fourier Transform

	continuous in time	discrete in time			
		periodic in frequenc			
in frequency	$x(t) = rac{1}{2\pi} \int\limits_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$	$x(n) = \frac{T}{2\pi} \int_{-\pi/T}^{+\pi/T} X(e^{j\omega T})e^{i\omega T}$			
continuous	$X(j\omega) = \int\limits_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$	$X(e^{j\omega T}) = \sum_{n=-\infty}^{\infty} x(n)e^{i\omega T}$			
	Fourier transform	Fourier transform $t =$			
~		2			

Let's consider basis functions: $sin(\omega t)$, $cos(\omega t)$ and $\delta(t)$				
support region	in time	in frequency		
$sin(\omega t)$	$(-\infty,\infty)$	0		
$\cos(\omega t)$	$(-\infty,\infty)$	0		
$\delta(t)$	0	$(-\infty,\infty)$		

- The basis functions sin(ωt) and cos(ωt) are not localized in time!
- The $\delta(t)$ is not localized in frequency!

We have learned to localize a signal in time domain by windowing \Rightarrow short time Fourier transform (STFT)

- $\bullet\,$ When sampling an audio signal at a sampling rate 44.1 kHz
- ... 1 hour of stereophonic music would be 44100 \times 2 \times 60 \times 60 = 317520000 samples !
- If we want to compute DFT, the closest power-of-two FFT is $2^{28} = 268435456$ per channel.
- A better approach is to break the long signal into small segments and analyze each one with FFT ⇒ short time Fourier transform

- Assume that x[m] is an infinitely long sequence
- in order to localize energy in time and frequency we segment the signal into short-time pieces and calculate DFT of each one
- sampled STFT for a window defined in the region $0 \le m \le M 1$ is given by

$$X[k, \ell L] = \sum_{m=0}^{M-1} x[\ell L - m]w[m] \exp\left(-j2\pi \frac{km}{N}\right)$$

Short Time Fourier Transform

ČVUT

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Short Time Fourier Transform

ČVUT CESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

spectrogram(x,window,noverlap,nfft,fs,'yaxis')

- **x** is the signal specified by vector **x**.
- if **window** is an integer, **x** is divided into segments of length equal to that integer value
- otherwise, window is a Hamming window of length nfft
- **noverlap** is the number of samples each segment of **x** overlaps

spectrogram(x,window,noverlap,nfft,fs,'yaxis')

- **x** is the signal specified by vector **x**.
- if window is an integer, x is divided into segments of length equal to that integer value
- otherwise, window is a Hamming window of length nfft
- **noverlap** is the number of samples each segment of **x** overlaps

spectrogram(x,window,noverlap,nfft,fs,'yaxis')

- **x** is the signal specified by vector **x**.
- if window is an integer, x is divided into segments of length equal to that integer value
- otherwise, window is a Hamming window of length nfft
- **noverlap** is the number of samples each segment of **x** overlaps

spectrogram(x,window,noverlap,nfft,fs,'yaxis')

- **x** is the signal specified by vector **x**.
- if window is an integer, x is divided into segments of length equal to that integer value
- otherwise, window is a Hamming window of length nfft
- noverlap is the number of samples each segment of x overlaps

- nfft is the FFT length and is the maximum of 256 or the next power of 2 greater than the length of each segment of x
- **fs** is the sampling frequency, which defaults to normalized frequency
- using 'yaxis' displays frequency on the *y*-axis and time on the *x*-axis

We also use command **colorbar** which appends a color scale to the current axes.

Matlab project

MATLAB project – Spectrogram I

a) Start MATLAB. Load in the audio signal with commands

```
filename = 'flute-C4.wav';
```

```
[x1 sr1] = audioread(filename);
```

b) The sampling rate is 11 025 Hz, and the signal contains 36 250 samples.

Q: If we consider this signal as sampled on an interval [0, T), what is the time duration of the flute sound ?

- d) Resample the audio signal by $f_{\rm r}=4000\,{\rm Hz}$ and write the sound file to disk using

audiowrite('flute-resampled.wav',x2, sr2);

ČVUT

MATLAB project – Spectrogram I

ČVUT

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

- e) Compute the DFT of the signal with X1 = fft(x1(1:1024)); and X2 = fft(x2(1:1024));
- f) DFT of real-valued signals is always symmetric around fr/2 so we only need to plot the first half. Display the magnitude of the Fourier transform using

plot(f1(1:end/2+1), abs(X1(1:end/2+1)))}

g) Q: What is the approximate fundamental frequency of the flute note C4?

- e) Compute the DFT of the signal with X1 = fft(x1(1:1024)); and X2 = fft(x2(1:1024));
- f) DFT of real-valued signals is always symmetric around fr/2 so we only need to plot the first half. Display the magnitude of the Fourier transform using

plot(f1(1:end/2+1), abs(X1(1:end/2+1)))}

g) Q: What is the approximate fundamental frequency of the flute note C4? A: Find the bin corresponding to the first peak in the magnitude spectrum.

 e) You can use a systematic way to find the frequency of the peaks in spectrum abs(X2) using following commands:

```
% find local maxima
mag = abs(X2);
mag = mag(1:end/2+1);
peaks = (mag(1:end-2) < mag(2:end-1)) &
(mag(2:end-1) > mag(3:end));
```

 f) Then evaluate the peaks at corresponding frequencies above a threshold:

```
peaks = peaks & mag(2:end-1) > 0.5;
fmax = f2(peaks)
```

MATLAB project Spectrogram I

MATLAB project Spectrogram I

g) Finally we will use Spectrogram with following specifications:

```
nwin = 512; % samples of a window
noverlap = 256; % samples of overlaps
nfft = 512; % samples of fast Fourier
transform
f = figure(1)
spectrogram(x1, nwin, noverlap, nfft, sr2,
'vaxis');
colorbar % not stricly necessary
print -djpeg90 figure-spect % or ...
saveas(f, 'figure-spect.eps', 'epsc);
```

h) Carefully study the options for the spectrogram using help!

MATLAB project Spectrogram – I


```
t=[0:1999]/1000;
f=cos(2*pi*137*t)+cos(2*pi*147*t);
```

- b) Compute the DFT of **f** and display its magnitude in time and frequency domain.
- c) Construct a spectrogram using

spectrogram(f,512,510,512,1000,'yaxis');

ČVUT

MATLAB project – Spectrogram II

