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Miroslav Vlček, Jan Přikryl

December 2, 2019

Department of Applied Mathematics, CTU FTS



Contents

Nonstationary Signals and Analysis

Introduction to Wavelets

A note to your compositions

MATLAB project

1



Nonstationary Signals and Analysis



Limits in signal analysis

There are several approaches available for addressing

non-stationary signals:

• The Short Time Fourier Transform has in principle excellent

frequency resolution, with the time resolution varying with the

length of the window, which for some non-stationary signals

fails to provide information about substantial time events.
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Limits in signal analysis

• The Wavelet Transform possesses excellent time resolution,

but in principle it has poorer frequency resolution than the

Short Time Fourier Transform. The continuous wavelet

functions are not generally orthogonal, so the signal

reconstruction is ill-defined, while the Discrete Wavelet

Transform (DWT) forms orthogonal or biorthogonal bases

which do not produce redundant components in signal

analysis.
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Limits in signal analysis

• The Hilbert-Huang Transform, in spite of its good

performance in analysing non-linear, non-stationary signals,

has no inversion (e.g. there is no process for reconstructing

the original signal).
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Introduction to Wavelets



Wavelet bases

1. Wavelet bases like Fourier bases reveal the signal properties

through the coefficients of its expansion

2. Wavelets are well localized and few coefficients are needed to

represent local transient structure.

3. Wavelet basis defines a sparse representation of piecewise

regular signal which may include transients and singularities.

4. In images, the wavelet coefficients are located in the

neighborhood of edges and irregular textures. Wavelets form

bases for the image compression standard JPEG 2000.

5. Wavelets hardly provides frequency content of the signal.
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Wavelet bases

The story began in 1910, when Alfred Haar constructed a

piecewise constant function

ψ(t) =


1 if 0 ≤ t < 0.5

−1 if 0.5 ≤ t < 1

0 otherwise

the dilatations and translations of which generate an orthonormal

basis {
ψ`,n(t) =

√
2`ψ

(
2` t − n

)}
`,n∈Z2

(1)
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Haar wavelets
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Figure 1: Mother Haar wavelet ψ0,0(t)
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Haar wavelets
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Figure 2: Scaled Haar wavelets ψ1,0(t) and ψ1,1(t)
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Haar wavelets
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Figure 3: Scaled Haar wavelets ψ2,0(t) , ψ2,1(t) , ψ2,2(t) , ψ2,3(t)
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Haar wavelets

A general form of the Haar wavelets can be written explicitly as

ψ`,n(t) =


+
√

2` if
n

2`
≤ t <

n + 0.5

2`
,

−
√

2` if
n + 0.5

2`
≤ t <

n + 1

2`
,

0 otherwise.

(2)

Each Haar wavelet ψ`,n(t) has a zero average over its support

〈 n
2`
,
n + 1

2`
〉 of length 2−`. For any fixed ` the function ψ`,n(t) is

simply ψ`,0(t) translated
n

2`+1
units to the right.
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Haar wavelets

Definition (Function support)

The support of a function f (t) defined on R is the closure of the

set on which f (t) is nonzero. A function f (t) is said to be

supported in a set A ⊆ R, if the support of f (t) is contained in A.

If a function f (t) is supported on a bounded interval [a, b], then

f (t) is said to have compact support on [a, b].
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Haar wavelets properties

Scalar product

〈f (t), g(t)〉 =

∫ 1

0
f (t) g∗(t) dt

Norm

||f (t)||2 = 〈f (t), f (t)〉 =

∫ 1

0
f (t) f ∗(t) dt

Orthogonality

〈ψ`,n(t), ψm,n(t)〉 =

∫ 1

0
ψ`,n(t)ψm,n(t) dt = 2`δ`,m
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Haar wavelets

If we define the Haar scaling function as

φ(t) =

1 if 0 ≤ t < 1,

0 otherwise,

then any function f (t) can be approximated in arbitrary precision L

on (0, 1) as

fL+1(t) = c0φ(t) +
L∑

`=0

2L−1∑
n=0

c`,nψ`,n(t),

where

c0 = 〈f (t), φ(t)〉 =

∫ 1

0
f (t) dt

c`,n = 〈f (t), ψ`,n(t)〉 =
√

2`
∫ 1

0
f (t)ψ`,n(t) dt
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Function approximation

Proposition (Average value of f (t))

For any f (t) ∈ (0, 1) with finite energy
∫ 1
0 f (t) f ∗(t) dt, the

constant value of the approximation fL+1(t) on any interval

〈n 2−L, (n + 1) 2−L〉 is the average value of f (t) on that interval.

Proof by induction!
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Example: Wavelet representation of cubic

Let f (t) = t (1− t) (2− t) on interval 0 ≤ t ≤ 1. Using Haar

wavelets, find approximation of this function for L = 0 and L = 1.

As the scale function φ(t) is equal to 1 for the whole interval, we

have for L = 0

c0 =

∫ 1

0
f (t) dt =

∫ 1

0
(t3 − 3 t2 + 2 t) dt =

[
t4

4
− t3 + t2

]1
0

=
1

4

and the only wavelet scaling coefficient

c0,0 =
√

20
∫ 1

0
f (t)ψ0,0(t) dt =

=

∫ 1/2

0
f (t) · (+1) dt +

∫ 1

1/2
f (t) · (−1) dt = a1 + a2
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Example: Wavelet representation of cubic

a1 =

∫ 1/2

0
f (t) · (+1) dt =

∫ 1/2

0
(t3 − 3 t2 + 2 t) dt =

=

[
t4

4
− t3 + t2

]1/2
0

=
1

4

a2 =

∫ 1/2

0
f (t) · (−1) dt = −

∫ 1

1/2
(t3 − 3 t2 + 2 t) dt =

= −
[
t4

4
− t3 + t2

]1
1/2

=
1

4
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Example 1:

a2 =

∫ 1

0
dt f (t)ψ0,0(t) = −2

∫ 1

1/2
dt(t3 − 3 t2 + 2 t)

= −2

[
t4

4
− t3 + t2

]1
1/2

= −2

(
1

4
− 9

64

)
= − 7

32

(3)

so that

f0(t) =


9

32
if 0 ≤ t < 0.5

(−1)×− 7

32
=

7

32
if 0.5 ≤ t < 1.0

(4)
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Example 1:
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Figure 4: Haar expansion using all wavelets ψ0,0(t) , ψ1,0(t) and ψ1,1(t)

Derive by integration the constant values of

f1(t) =

[
49

256

95

256

81

256

31

256

]
and plot the diagrams.
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Wavelets

• There is enormous number of wavelets having names after

researchers in 80s and 90s.

• To name few of them Yves Mayer, Stephane Mallat, Ingrid

Daubechies . . .

• For example, a simple request on Web of Knowledge for

“Wavelet Transform” revealed close to 750 publications in

2010/2011.
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Wavelets in MATLAB

Typing waveinfo(’wname’) you get information about wavelets

Wavelet Family Short Name Wavelet Family Name

’haar’ Haar wavelet

’db’ Daubechies wavelets

’sym’ Symlets

’bior’ Biorthogonal wavelets

’rbior’ Reverse biorthogonal wavelets

’meyr’ Meyer wavelet

’dmey’ Discrete approximation of Meyer wavelet

’gaus’ Gaussian wavelets

’mexh’ Mexican hat wavelet

’morl’ Morlet wavelet
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A note to your compositions



Even better sound...

We have already talked about sound improvements.

You can furhter improve the audio by including some partials to an

original tone, i.e. to the tone A4 (440 Hz) we will add also

440 Hz, 880 Hz, . . . , 440k [Hz].

If you make a spectrogram of a real piano tone A

you can see relative duration of harmonics

21



MATLAB project



MATLAB project

1. Start MATLAB and create an artificial piecewise constant signal

with

y = zeros(256,1);

y(100:160) = 1.0;

2. The Discrete Wavelet Transform is provided by MATLAB under a

variety of extension modes. We can perform a one-stage wavelet

decomposition of the signal for example with

[cA, cD] = dwt(y,’bior2.2’);

3. Here cA is a vector of the approximation coefficients and cD the

detailed coefficients.

4. The bior2.2 argument specifies the wavelet to be used, which in

this case corresponds to La Gall 5/3 wavelet.
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MATLAB project

5. You can execute waveinfo(’bior’) to see other orthogonal

wavelets.

6. Plot the vectors cA and cD.
Since the signal is almost constant, cA looks like an approximately

half-length version of the original signal. There are some distortions at

the jumps.

The vector cD is mostly zero except at the discontinuity which contains

high frequency energy.

7. Since the signal is implicitly extended at the boundary by

symmetric reflection, there are no discontinuities there.

8. We can reconstruct an approximation to the original full length

using only coefficients cA by

y2 = upcoef(’a’,cA,’bior2.2’,1);

9. Plot y2!
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MATLAB project

10. Change the extension mode to periodic extension with command

dwtmode(’per’)

11. Periodic extension introduces discontinuities at the signal

boundaries. This is obvious in the plots cA and cD and in

reconstruction y2

12. Repeat the above steps with another wavelet.
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Example 2: Meyer wavelets

% Set effective support and grid parameters.

lb = -8; ub = 8; n = 1024;

% Meyer wavelet and scaling functions.

[phi,psi,x] = meyer(lb,ub,n);

subplot(211)

plot(x,psi), grid

title(’Meyer wavelet’)

subplot(212)

plot(x,phi), grid

title(’Meyer scaling function’)
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Example 2:
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Figure 5: Meyer wavelets
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